
RF Toolbox™
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

RF Toolbox™ User's Guide
© COPYRIGHT 2004–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
June 2004 Online only New for Version 1.0 (Release 14)
August 2004 Online only Revised for Version 1.0.1 (Release 14+)
March 2005 Online only Revised for Version 1.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.2 (Release 14SP3)
March 2006 Online only Revised for Version 1.3 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Online only Revised for Version 2.2 (Release 2007b)
March 2008 Online only Revised for Version 2.3 (Release 2008a)
October 2008 Online only Revised for Version 2.4 (Release 2008b)
March 2009 Online only Revised for Version 2.5 (Release 2009a)
September 2009 Online only Revised for Version 2.6 (Release 2009b)
March 2010 Online only Revised for Version 2.7 (Release 2010a)
September 2010 Online only Revised for Version 2.8 (Release 2010b)
April 2011 Online only Revised for Version 2.8.1 (Release 2011a)
September 2011 Online only Revised for Version 2.9 (Release 2011b)
March 2012 Online only Revised for Version 2.10 (Release 2012a)
September 2012 Online only Revised for Version 2.11 (Release 2012b)
March 2013 Online only Revised for Version 2.12 (Release 2013a)
September 2013 Online only Revised for Version 2.13 (Release 2013b)
March 2014 Online only Revised for Version 2.14 (Release 2014a)
October 2014 Online only Revised for Version 2.15 (Release 2014b)
March 2015 Online only Revised for Version 2.16 (Release 2015a)
September 2015 Online only Revised for Version 2.17 (Release 2015b)
March 2016 Online only Revised for Version 3.0 (Release 2016a)
September 2016 Online only Revised for Version 3.1 (Release 2016b)
March 2017 Online only Revised for Version 3.2 (Release 2017a)
September 2017 Online only Revised for Version 3.3 (Release 2017b)
March 2018 Online only Revised for Version 3.4 (Release 2018a)
September 2018 Online only Revised for Version 3.5 (Release 2018b)
March 2019 Online only Revised for Version 3.6 (Release 2019a)
September 2019 Online only Revised for Version 3.7 (Release 2019b)
March 2020 Online only Revised for Version 3.8 (Release 2020a)
September 2020 Online only Revised for Version 4.0 (Release 2020b)
March 2021 Online only Revised for Version 4.1 (Release 2021a)

RF Objects
1

RF Data Objects . 1-2
Overview . 1-2
Types of Data . 1-2
Available Data Objects . 1-2
Data Object Methods . 1-3

RF Circuit Objects . 1-4
Overview of RF Circuit Objects . 1-4
Components Versus Networks . 1-4
Available Components and Networks . 1-5
Circuit Object Methods . 1-6

RF Model Objects . 1-8
Overview of RF Model Objects . 1-8
Available Model Objects . 1-8
Model Object Methods . 1-8

RF Network Parameter Objects . 1-10
Overview of Network Parameter Objects . 1-10
Available Network Parameter Objects . 1-10
Network Parameter Object Functions . 1-10

Model an RF Component
2

Create RF Objects . 2-2
Construct a New Object . 2-2
Copy an Existing Object . 2-3

Specify or Import Component Data . 2-4
RF Object Properties . 2-4
Set Property Values . 2-4
Import Property Values from Data Files . 2-6
Use Data Objects to Specify Circuit Properties . 2-8
Retrieve Property Values . 2-9
Reference Properties Directly Using Dot Notation 2-11

Specify Operating Conditions . 2-12
Available Operating Conditions . 2-12
Set Operating Conditions . 2-12
Display Available Operating Condition Values . 2-12

v

Contents

Process File Data for Analysis . 2-14
Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters 2-14
Extract M-Port S-Parameters from N-Port S-Parameters 2-15
Cascade N-Port S-Parameters . 2-16

Analyze and Plot RF Components . 2-19
Analyze Networks in Frequency Domain . 2-19
Visualize Component and Network Data . 2-19
Compute and Plot Time-Domain Specifications . 2-24

Export Component Data to File . 2-27
Available Export Formats . 2-27
How to Export Object Data . 2-27
Export Object Data . 2-28

Basic Operations with RF Objects . 2-29

Export Verilog-A Models
3

Model RF Objects Using Verilog-A . 3-2
Overview . 3-2
Behavioral Modeling Using Verilog-A . 3-2
Supported Verilog-A Models . 3-2

Export Verilog-A Model . 3-4
Represent Circuit Object with Model Object . 3-4
Write Verilog-A Module . 3-5

The RF Design and Analysis Tool
4

The RF Design and Analysis Tool . 4-2
What is the RF Design and Analysis App? . 4-2
Open the RF Design and Analysis App . 4-2
The RF Design and Analysis Window . 4-2
The RF Design and Analysis App Workflow . 4-3

Create and Import Circuits . 4-5
Circuits in the RF Design and Analysis App . 4-5
Create RF Components . 4-5
Create RF Networks . 4-7
Import RF Objects into the RF Design and Analysis App 4-11

Modify Component Data . 4-14

Analyze Circuits . 4-15

vi Contents

Export RF Objects . 4-18
Export Components and Networks . 4-18
Export to Workspace . 4-18
Export to a File . 4-19

Manage Circuits and Sessions . 4-21
Working with Circuits . 4-21
Working with the RF Design and Analysis App Sessions 4-22

Model an RF Network . 4-24
Overview . 4-24
Start the RF Design and Analysis App . 4-24
Create the Amplifier Network . 4-24
Populate the Amplifier Network . 4-25
Analyze the Amplifier Network . 4-28
Export the Network to the Workspace . 4-29

AMP File Format
5

AMP File Data Sections . 5-2
Overview . 5-2
Denoting Comments . 5-2
Data Sections . 5-3
S, Y, or Z Network Parameters . 5-3
Noise Parameters . 5-4
Noise Figure Data . 5-5
Power Data . 5-6
IP3 Data . 5-8
Inconsistent Data Sections . 5-9

How Tos, Definitions, Algorithms
6

Determining Parameter Formats . 6-2
Primary and Secondary Formats . 6-2
Determining Formats for One Parameter . 6-3
Determining Formats for Multiple Parameters . 6-3

RF Toolbox Examples
7

Superheterodyne Receiver Using RF Budget Analyzer App 7-2

Visualizing RF Budget Analysis Over Bandwidth 7-16

vii

Bandpass Filter Response . 7-24

MOS Interconnect and Crosstalk . 7-30

Bandpass Filter Response using RFCKT Objects 7-36

MOS Interconnect and Crosstalk Using RFCKT Objects 7-42

Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-
Port S-Parameters) . 7-50

Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational
Function) . 7-55

Modeling a High-Speed Backplane (4-Port S-Parameters to Differential
TDR and TDT) . 7-62

Modeling a High-Speed Backplane (Rational Function to a Simulink®
Model) . 7-65

Modeling a High-Speed Backplane (Rational Function to a Verilog-A
Module) . 7-69

Using 'NPoles' Parameter With rationalfit . 7-73

Using 'Weight' Parameter With rationalfit . 7-77

Using 'DelayFactor' Parameter With rationalfit . 7-83

Data Analysis on S-Parameters of RF Data Files 7-87

Write S2P Touchstone® Files . 7-96

Visualize Mixer Spurs . 7-99

Finding Free IF Bandwidths . 7-105

De-Embedding S-Parameters . 7-114

Bisect S-Parameters of Cascaded Probes . 7-118

Designing Matching Networks for Low Noise Amplifiers 7-123

Designing Matching Networks (Part 2: Single Stub Transmission Lines)
. 7-133

Design Broadband Matching Networks for Antennas 7-141

Design Broadband Matching Networks for Amplifier 7-150

Impedance Matching of Small Monopole Antenna 7-162

Operations with RF Circuit Objects . 7-169

viii Contents

Operations with RF Data Objects . 7-175

Design IF Butterworth Bandpass Filter . 7-179

Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output
. 7-183

Design, Visualize and Explore Inverse Chebyshev filter - I 7-190

Design, visualize and explore Inverse Chebyshev filter - II 7-195

Design Matching Networks for Passive Multiport Network 7-201

Frequency Sweep in RF Budget Analysis . 7-210

Using Rational Object to Fit S-Parameters . 7-212

Design Two-Stage Low Noise Amplifier Using Microstrip Transmission
Line Matching Network . 7-216

RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF
. 7-223

Analysis of Coplanar Waveguide Transmission line in X band application
. 7-229

Extract S-Parameters from Circuit . 7-234

Extract S-Parameters from Mutual Inductor . 7-238

ix

RF Objects

• “RF Data Objects” on page 1-2
• “RF Circuit Objects” on page 1-4
• “RF Model Objects” on page 1-8
• “RF Network Parameter Objects” on page 1-10

1

RF Data Objects
In this section...
“Overview” on page 1-2
“Types of Data” on page 1-2
“Available Data Objects” on page 1-2
“Data Object Methods” on page 1-3

Overview
RF Toolbox software uses data (rfdata) objects to store:

• Component data created from files or from information that you specify in the MATLAB®

workspace.
• Analyzed data from a frequency-domain simulation of a circuit object.

You can perform basic tasks, such as plotting and network parameter conversion, on the data stored
in these objects. However, data objects are primarily used to store data for use by other RF objects.

Types of Data
The toolbox uses RF data objects to store one or more of the following types of data:

• Network parameters
• Spot noise
• Noise figure
• Third-order intercept point (IP3)
• Power out versus power in

Available Data Objects
The following table lists the available rfdata object constructors and describes the data the
corresponding objects represent. For more information on a particular object, follow the link in the
table to the reference page for that object.

Constructor Description
rfdata.data Data object containing network parameter data
rfdata.ip3 Data object containing IP3 information
rfdata.mixerspur Data object containing mixer spur information from an

intermodulation table
rfdata.network Data object containing network parameter information
rfdata.nf Data object containing noise figure information
rfdata.noise Data object containing noise information
rfdata.power Data object containing power and phase information

1 RF Objects

1-2

Data Object Methods
The following table lists the methods of the data objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose
extract rfdata.data,

rfdata.network
Extract specified network parameters from a
circuit or data object and return the result in an
array

read rfdata.data Read RF data parameters from a file to a new or
existing data object.

write rfdata.data Write RF data from a data object to a file.

See Also

More About
• “RF Analysis”
• “RF Circuit Objects” on page 1-4
• “RF Model Objects” on page 1-8
• “RF Network Parameter Objects” on page 1-10

 RF Data Objects

1-3

RF Circuit Objects

In this section...
“Overview of RF Circuit Objects” on page 1-4
“Components Versus Networks” on page 1-4
“Available Components and Networks” on page 1-5
“Circuit Object Methods” on page 1-6

Overview of RF Circuit Objects
RF Toolbox software uses circuit (rfckt) objects to represent the following components:

• Circuit components such as amplifiers, transmission lines, and ladder filters
• RLC network components
• Networks of RF components

The toolbox represents each type of component and network with a different object. You use these
objects to analyze components and networks in the frequency domain.

Components Versus Networks
You define component behavior using network parameters and physical properties.

To specify an individual RF component:

1 Construct a circuit object to represent the component.
2 Specify or import component data.

You define network behavior by specifying the components that make up the network. These
components can be either individual components (such as amplifiers and transmission lines) or other
networks.

To specify an RF network:

1 Build circuit objects to represent the network components.
2 Construct a circuit object to represent the network.

Note This object defines how to connect the network components. However, the network is
empty until you specify the components that it contains.

3 Specify, as the Ckts property of the object that represents the network, a list of components that
make up the network.

These procedures are illustrated by example in “Model a Cascaded RF Network”.

1 RF Objects

1-4

Available Components and Networks
To create circuit objects that represent components, you use constructors whose names describe the
components. To create circuit objects that represent networks, you use constructors whose names
describe how the components are connected together.

The following table lists the available rfckt object constructors and describes the components or
networks the corresponding objects represent. For more information on a particular object, follow the
link in the table to the reference page for that object.

Constructor Description
rfckt.amplifier Amplifier, described by an rfdata object
rfckt.cascade Cascaded network, described by the list of components and

networks that comprise it
rfckt.coaxial Coaxial transmission line, described by dimensions and

electrical characteristics
rfckt.cpw Coplanar waveguide transmission line, described by dimensions

and electrical characteristics
rfckt.datafile General circuit, described by a data file
rfckt.delay Delay line, described by loss and delay
rfckt.hybrid Hybrid connected network, described by the list of components

and networks that comprise it
rfckt.hybridg Inverse hybrid connected network, described by the list of

components and networks that comprise it
rfckt.lcbandpasspi LC bandpass pi network, described by LC values
rfckt.lcbandpasstee LC bandpass tee network, described by LC values
rfckt.lcbandstoppi LC bandstop pi network, described by LC values
rfckt.lcbandstoptee LC bandstop tee network, described by LC values
rfckt.lchighpasspi LC highpass pi network, described by LC values
rfckt.lchighpasstee LC highpass tee network, described by LC values
rfckt.lclowpasspi LC lowpass pi network, described by LC values
rfckt.lclowpasstee LC lowpass tee network, described by LC values
rfckt.microstrip Microstrip transmission line, described by dimensions and

electrical characteristics
rfckt.mixer Mixer, described by an rfdata object
rfckt.parallel Parallel connected network, described by the list of components

and networks that comprise it
rfckt.parallelplate Parallel-plate transmission line, described by dimensions and

electrical characteristics
rfckt.passive Passive component, described by network parameters
rfckt.rlcgline RLCG transmission line, described by RLCG values
rfckt.series Series connected network, described by the list of components

and networks that comprise it

 RF Circuit Objects

1-5

Constructor Description
rfckt.seriesrlc Series RLC network, described by RLC values
rfckt.shuntrlc Shunt RLC network, described by RLC values
rfckt.twowire Two-wire transmission line, described by dimensions and

electrical characteristics
rfckt.txline General transmission line, described by dimensions and

electrical characteristics

Circuit Object Methods
The following table lists the methods of the circuit objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose
analyze All circuit objects Analyze a circuit object in the frequency

domain.
calculate All circuit objects Calculate specified parameters for a circuit

object.
copy All circuit objects Copy a circuit or data object.
extract All circuit objects Extract specified network parameters from a

circuit or data object, and return the result in
an array.

getdata All circuit objects Get data object containing analyzed result of a
specified circuit object.

getz0 rfckt.txline,
rfckt.rlcgline,
rfckt.twowire,
rfckt.parallelplate,
rfckt.coaxial,
rfdata.microstrip,
rfckt.cpw

Get characteristic impedance of a
transmission line.

listformat All circuit objects List valid formats for a specified circuit object
parameter.

listparam All circuit objects List valid parameters for a specified circuit
object.

loglog All circuit objects Plot specified circuit object parameters using
a log-log scale.

plot All circuit objects Plot the specified circuit object parameters on
an X-Y plane.

plotyy All circuit objects Plot the specified object parameters with y-
axes on both the left and right sides.

polar All circuit objects Plot the specified circuit object parameters on
polar coordinates.

1 RF Objects

1-6

Method Types of Objects Purpose
read rfckt.datafile,

rfckt.passive,
rfckt.amplifier,
rfckt.mixer

Read RF data from a file to a new or existing
circuit object.

restore rfckt.datafile,
rfckt.passive,
rfckt.amplifier,
rfckt.mixer

Restore data to original frequencies of
NetworkData for plotting.

semilogx All circuit objects Plot the specified circuit object parameters
using a log scale for the X-axis

semilogy All circuit objects Plot the specified circuit object parameters
using a log scale for the Y-axis

smith All circuit objects Plot the specified circuit object parameters on
a Smith chart.

write All circuit objects Write RF data from a circuit object to a file.
smithplot All circuit objects Plot measurement data on Smith chart

See Also

More About
• “RF Model Objects” on page 1-8
• “RF Analysis”
• “RF Data Objects” on page 1-2
• “RF Network Parameter Objects” on page 1-10

 RF Circuit Objects

1-7

RF Model Objects
In this section...
“Overview of RF Model Objects” on page 1-8
“Available Model Objects” on page 1-8
“Model Object Methods” on page 1-8

Overview of RF Model Objects
RF Toolbox software uses model (rfmodel) objects to represent components and measured data
mathematically for computing information such as time-domain response. Each type of model object
uses a different mathematical model to represent the component.

RF model objects provide a high-level component representation for use after you perform detailed
analysis using RF circuit objects. Use RF model objects to:

• Compute time-domain figures of merit for RF components
• Export Verilog-A models of RF components

Available Model Objects
The following table lists the available rfmodel object constructors and describes the model the
corresponding objects use. For more information on a particular object, follow the link in the table to
the reference page for that object.

Constructor Description
rfmodel.rational Rational function model

Model Object Methods
The following table lists the methods of the model objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose
freqresp All model objects Compute the frequency response of a model

object.
timeresp All model objects Compute the time response of a model object.
write All model objects Write data from a model object to a file.

See Also

More About
• “RF Analysis”
• “RF Data Objects” on page 1-2
• “RF Circuit Objects” on page 1-4

1 RF Objects

1-8

• “RF Network Parameter Objects” on page 1-10

 RF Model Objects

1-9

RF Network Parameter Objects

In this section...
“Overview of Network Parameter Objects” on page 1-10
“Available Network Parameter Objects” on page 1-10
“Network Parameter Object Functions” on page 1-10

Overview of Network Parameter Objects
RF Toolbox software offers network parameter objects for:

• Importing network parameter data from a Touchstone file.
• Converting network parameters.
• Analyzing network parameter data.

Unlike circuit, model, and data objects, you can use existing RF Toolbox functions to operate directly
on network parameter objects.

Available Network Parameter Objects
The following table lists the available network parameter objects and the functions that are used to
construct them. For more information on a particular object, follow the link in the table to the
reference page for that functions.

Network Parameter Object Type Network Parameter Object Function
ABCD Parameter object abcdparameters
Hybrid-g parameter object gparameters
Hybrid parameter object hparameters
S-parameter object sparameters
Y-parameter object yparameters
Z-parameter object zparameters

Network Parameter Object Functions
The following table lists the functions that accept network parameter objects as inputs, the types of
objects on which each can act, and the purpose of each function.

Function Types of Objects Purpose
abcdparameters All network parameter objects Convert any network

parameters to ABCD
parameters

gparameters All network parameter objects Convert any network
parameters to hybrid-g
parameters

1 RF Objects

1-10

Function Types of Objects Purpose
hparameters All network parameter objects Convert any network

parameters to hybrid
parameters

sparameters All network parameter objects Convert any network
parameters to S-parameters

yparameters All network parameter objects Convert any network
parameters to Y-parameters

zparameters All network parameter objects Convert any network
parameters to Z-parameters

cascadesparams S-parameter objects Cascade S-parameters
deembedsparams S-parameter objects De-embed S-parameters
gammain S-parameter objects Calculate input reflection

coefficient
gammaml S-parameter objects Calculate load reflection

coefficient
gammams S-parameter objects Calculate source reflection

coefficient
gammaout S-parameter objects Calculate output reflection

coefficient
ispassive S-parameter objects Check S-parameter data

passivity
makepassive S-parameter objects Make S-parameter data passive
newref S-parameter objects Change reference impedance
powergain S-parameter objects Calculate power gain
rfplot S-parameter objects Plot network parameters
rfinterp1 All network parameter objects Interpolate network parameters

at new frequencies
rfparam All network parameter objects Extract vector of network

parameters
s2tf S-parameter objects Create transfer function from S-

parameters
stabilityk S-parameter objects Calculate stability factor K of 2-

port network
stabilitymu S-parameter objects Calculate stability factor μ of 2-

port network
smith All network parameter objects Plot network parameter data on

a Smith® Chart
smithplot All network parameter objects Plot measurement data on

Smith chart

 RF Network Parameter Objects

1-11

See Also

More About
• “RF Data Objects” on page 1-2
• “RF Circuit Objects” on page 1-4
• “RF Model Objects” on page 1-8
• “S-Parameter Notation”

1 RF Objects

1-12

Model an RF Component

• “Create RF Objects” on page 2-2
• “Specify or Import Component Data” on page 2-4
• “Specify Operating Conditions” on page 2-12
• “Process File Data for Analysis” on page 2-14
• “Analyze and Plot RF Components” on page 2-19
• “Export Component Data to File” on page 2-27
• “Basic Operations with RF Objects” on page 2-29

2

Create RF Objects
In this section...
“Construct a New Object” on page 2-2
“Copy an Existing Object” on page 2-3

Construct a New Object
You can create any rfdata, rfckt or rfmodel object by calling the object constructor. You can
create an rfmodel object by fitting a rational function to passive component data.

This section contains the following topics:

• “Call the Object Constructor” on page 2-2
• “Fit a Rational Function to Passive Component Data” on page 2-3

Call the Object Constructor

To create a new RF object with default property values, you call the object constructor without any
arguments:

h = objecttype.objectname

where:

• h is the handle to the new object.
• objecttype is the object type (rfdata, rfckt, or rfmodel).
• objectname is the object name.

For example, to create an RLCG transmission line object, type:

h = rfckt.rlcgline

because the RLCG transmission line object is a circuit (rfckt) object named rlcgline.

The following code illustrates how to call the object constructor to create a microstrip transmission
line object with default property values. The output t1 is the handle of the newly created
transmission line object.

t1 = rfckt.microstrip

RF Toolbox software lists the properties of the transmission line you created along with the
associated default property values.

t1 =
 Name: 'Microstrip Transmission Line'
 nPort: 2
 AnalyzedResult: []
 LineLength: 0.0100
 StubMode: 'NotAStub'
 Termination: 'NotApplicable'
 Width: 6.0000e-004
 Height: 6.3500e-004

2 Model an RF Component

2-2

 Thickness: 5.0000e-006
 EpsilonR: 9.8000
 SigmaCond: Inf
 LossTangent: 0

The reference page describes these properties in detail, rfckt.microstrip.

Fit a Rational Function to Passive Component Data

You can create a model object by fitting a rational function to passive component data. You use this
approach to create a model object that represents one of the following using a rational function:

• A circuit object that you created and analyzed.
• Data that you imported from a file.

For more information, see “Fit Model Object to Circuit Object Data” on page 2-25.

Copy an Existing Object
You can create a new object with the same property values as an existing object by using the copy
function to copy the existing object. This function is useful if you have an object that is similar to one
you want to create.

For example,

t2 = copy(t1);

creates a new object, t2, which has the same property values as the microstrip transmission line
object, t1.

You can later change specific property values for this copy. For information on modifying object
properties, see “Specify or Import Component Data” on page 2-4.

Note The syntax t2 = t1 copies only the object handle and does not create a new object.

See Also

More About
• “Create and Import Circuits” on page 4-5
• “Process File Data for Analysis” on page 2-14

 Create RF Objects

2-3

Specify or Import Component Data
In this section...
“RF Object Properties” on page 2-4
“Set Property Values” on page 2-4
“Import Property Values from Data Files” on page 2-6
“Use Data Objects to Specify Circuit Properties” on page 2-8
“Retrieve Property Values” on page 2-9
“Reference Properties Directly Using Dot Notation” on page 2-11

RF Object Properties
Object properties specify the behavior of an object. You can specify object properties, or you can
import them from a data file. To learn about properties that are specific to a particular type of circuit,
data, or model object, see the reference page for that type of object.

Note The “RF Circuit Objects” on page 1-4, “RF Data Objects” on page 1-2,“RF Model Objects” on
page 1-8 sections list the available types of objects and provide links to their reference pages.

Set Property Values
You can specify object property values when you construct an object or you can modify the property
values of an existing object.

This section contains the following topics:

• “Specify Property Values at Construction” on page 2-4
• “Change Property Values of an Existing Object” on page 2-5

Specify Property Values at Construction

To set a property when you construct an object, include a comma-separated list of one or more
property/value pairs in the argument list of the object construction command. A property/value pair
consists of the arguments 'PropertyName',PropertyValue, where:

• PropertyName is a character vector specifying the property name. The name is case-insensitive.
In addition, you need only type enough letters to uniquely identify the property name. For
example, 'st' is sufficient to refer to the StubMode property.

Note You must use single quotation marks around the property name.
• PropertyValue is the value to assign to the property.

Include as many property names in the argument list as there are properties you want to set. Any
property values that you do not set retain their default values. The circuit and data object reference
pages list the valid values as well as the default value for each property.

This section contains examples of how to perform the following tasks:

2 Model an RF Component

2-4

• “Construct Components with Specified Properties” on page 2-5
• “Construct Networks of Specified Components” on page 2-5

Construct Components with Specified Properties

The following code creates a coaxial transmission line circuit object to represent a coaxial
transmission line that is 0.05 meters long. Notice that the toolbox lists the available properties and
their values.

t1 = rfckt.coaxial('LineLength',0.05)

t1 =

 Name: 'Coaxial Transmission Line'
 nPort: 2
 AnalyzedResult: []
 LineLength: 0.0500
 StubMode: 'NotAStub'
 Termination: 'NotApplicable'
 OuterRadius: 0.0026
 InnerRadius: 7.2500e-004
 MuR: 1
 EpsilonR: 2.3000
 LossTangent: 0
 SigmaCond: Inf

Construct Networks of Specified Components

To combine a set of RF components and existing networks to form an RF network, you create a
network object with the Ckts property set to an array containing the handles of all the circuit objects
in the network.

Suppose you have the following RF components:

t1 = rfckt.coaxial('LineLength',0.05);
a1 = rfckt.amplifier;
t2 = rfckt.coaxial('LineLength',0.1);

The following code creates a cascaded network of these components:

casc_network = rfckt.cascade('Ckts',{t1,a1,t2});

Change Property Values of an Existing Object

There are two ways to change the properties of an existing object:

• Using the set command
• Using structure-like assignments called dot notation

This section discusses the first option. For details on the second option, see “Reference Properties
Directly Using Dot Notation” on page 2-11.

To modify the properties of an existing object, use the set command with one or more property/value
pairs in the argument list. The general syntax of the command is

set(h,Property1',value1,'Property2',value2,...)

where

 Specify or Import Component Data

2-5

• h is the handle of the object.
• 'Property1',value1,'Property2',value2,... is the list of property/value pairs.

For example, the following code creates a default coaxial transmission line object and changes it to a
series stub with open termination.

t1 = rfckt.coaxial;
set(t1,'StubMode','series','Termination','open')

Note You can use the set command without specifying any property/value pairs to display a list of
all properties you can set for a specific object. This example lists the properties you can set for the
coaxial transmission line t1:

set(t1)

ans =
 LineLength: {}
 StubMode: {}
 Termination: {}
 OuterRadius: {}
 InnerRadius: {}
 MuR: {}
 EpsilonR: {}
 LossTangent: {}
 SigmaCond: {}

Import Property Values from Data Files
RF Toolbox software lets you import industry-standard data files, MathWorks® AMP files, and
Agilent® P2D and S2D files into specific objects. This import capability lets you simulate the behavior
of measured components.

You can import the following file formats:

• Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP formats specify the
network parameters and noise information for measured and simulated data.

For more information on Touchstone files, see https://ibis.org/connector/
touchstone_spec11.pdf.

• Agilent P2D file format — Specifies amplifier and mixer large-signal, power-dependent network
parameters, noise data, and intermodulation tables for several operating conditions, such as
temperature and bias values.

The P2D file format lets you import system-level verification models of amplifiers and mixers.
• Agilent S2D file format — Specifies amplifier and mixer network parameters with gain

compression, power-dependent S21 parameters, noise data, and intermodulation tables for several
operating conditions.

The S2D file format lets you import system-level verification models of amplifiers and mixers.
• MathWorks amplifier (AMP) file format — Specifies amplifier network parameters, output power

versus input power, noise data and third-order intercept point.

2 Model an RF Component

2-6

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

For more information about .amp files, see “AMP File Data Sections” on page 5-2.

This section contains the following topics:

• “Objects Used to Import Data from a File” on page 2-7
• “How to Import Data Files” on page 2-7

Objects Used to Import Data from a File

One data object and three circuit objects accept data from a file. The following table lists the objects
and any corresponding data format each supports.

Object Description Supported Format(s)
rfdata.data Data object containing network

parameter data, noise figure,
and third-order intercept point

Touchstone, AMP, P2D, S2D

rfckt.amplifier Amplifier Touchstone, AMP, P2D, S2D
rfckt.mixer Mixer Touchstone, AMP, P2D, S2D
rfckt.passive Generic passive component Touchstone

How to Import Data Files

To import file data into a circuit or data object at construction, use a read command of the form:

obj = read(obj_type,'filename');

where

• obj is the handle of the circuit or data object.
• obj_type is the type of object in which to store the data, from the list of objects that accept file

data shown in “Objects Used to Import Data from a File” on page 2-7.
• filename is the name of the file that contains the data.

For example,

ckt_obj=read(rfckt.amplifier, 'default.amp');

imports data from the file default.amp into an rfckt.amplifier object.

You can also import file data into an existing circuit object. The following commands are equivalent to
the previous command:

ckt_obj=rfckt.amplifier;
read(ckt_obj, 'default.amp');

Note When you import component data from a .p2d or .s2d file, properties are defined for several
operating conditions. You must select an operating condition to specify the object behavior, as
described in “Specify Operating Conditions” on page 2-12.

 Specify or Import Component Data

2-7

Use Data Objects to Specify Circuit Properties
To specify a circuit object property using a data object, use the set command with the name of the
data object as the value in the property/value pair.

For example, suppose you have the following rfckt.amplifier and rfdata.nf objects:

amp = rfckt.amplifier
f = 2.0e9;
nf = 13.3244;
nfdata = rfdata.nf('Freq',f,'Data',nf)

The following command uses the rfdata.nf data object to specify the rfckt.amplifier
NoiseData property:

set(amp,'NoiseData',nfdata)

Set Circuit Object Properties Using Data Objects

In this example, you create a circuit object. Then, you create three data objects and use them to
update the properties of the circuit object.

1 Create an amplifier object. This circuit object, rfckt.amplifier, has a network parameter,
noise data, and nonlinear data properties. These properties control the frequency response of the
amplifier, which is stored in the AnalyzedResult property. By default, all amplifier properties
contain values from the default.amp file. The NetworkData property is an rfdata.network
object that contains 50-ohm S-parameters. The NoiseData property is an rfdata.noise object
that contains frequency-dependent spot noise data. The NonlinearData property is an
rfdata.power object that contains output power and phase information.

amp = rfckt.amplifier

The toolbox displays the following output:

amp =

 Name: 'Amplifier'
 nPort: 2
 AnalyzedResult: [1x1 rfdata.data]
 IntpType: 'Linear'
 NetworkData: [1x1 rfdata.network]
 NoiseData: [1x1 rfdata.noise]
 NonlinearData: [1x1 rfdata.power]

2 Create a data object that stores network data. Type the following set of commands at the
MATLAB prompt to create an rfdata.network object that stores the 2-port Y-parameters at
2.08 GHz, 2.10 GHz, and 2.15 GHz. Later in this example, you use this data object to update the
NetworkData property of the rfckt.amplifier object.

f = [2.08 2.10 2.15]*1.0e9;
y(:,:,1) = [-.0090-.0104i, .0013+.0018i; ...
 -.2947+.2961i, .0252+.0075i];
y(:,:,2) = [-.0086-.0047i, .0014+.0019i; ...
 -.3047+.3083i, .0251+.0086i];
y(:,:,3) = [-.0051+.0130i, .0017+.0020i; ...
 -.3335+.3861i, .0282+.0110i];

2 Model an RF Component

2-8

netdata = rfdata.network('Type','Y_PARAMETERS',...
 'Freq',f,'Data',y)

The toolbox displays the following output:

netdata =

 Name: 'Network parameters'
 Type: 'Y_PARAMETERS'
 Freq: [3x1 double]
 Data: [2x2x3 double]
 Z0: 50

3 Create a data object that stores noise figure values. Type the following set of commands at
the MATLAB prompt to create a rfdata.nf object that contains noise figure values, in dB, at
seven different frequencies. Later in this example, you use this data object to update the
NoiseData property of the rfckt.amplifier object.

f = [1.93 2.06 2.08 2.10 2.15 2.30 2.40]*1.0e9;
nf=[12.4521 13.2466 13.6853 14.0612 13.4111 12.9499 13.3244];

nfdata = rfdata.nf('Freq',f,'Data',nf)

The toolbox displays the following output:

nfdata =

 Name: 'Noise figure'
 Freq: [7x1 double]
 Data: [7x1 double]

4 Create a data object that stores output third-order intercept points. Type the following
command at the MATLAB prompt to create a rfdata.ip3 object that contains an output third-
order intercept point of 8.45 watts, at 2.1 GHz. Later in this example, you use this data object to
update the NonlinearData property of the rfckt.amplifier object.

ip3data = rfdata.ip3('Type','OIP3','Freq',2.1e9,'Data',8.45)

The toolbox displays the following output:

ip3data =

 Name: '3rd order intercept'
 Type: 'OIP3'
 Freq: 2.1000e+009
 Data: 8.4500

5 Update the properties of the amplifier object. Type the following set of commands at the
MATLAB prompt to update the NetworkData, NoiseData, and NonlinearData properties of
the amplifier object with the data objects you created in the previous steps:

amp.NetworkData = netdata;
amp.NoiseData = nfdata;
amp.NonlinearData = ip3data;

Retrieve Property Values
You can retrieve one or more property values of an existing object using the get command.

 Specify or Import Component Data

2-9

This section contains the following topics:

• “Retrieve Specified Property Values” on page 2-10
• “Retrieve All Property Values” on page 2-10

Retrieve Specified Property Values

To retrieve specific property values for an object, use the get command with the following syntax:

PropertyValue = get(h,PropertyName)

where

• PropertyValue is the value assigned to the property.
• h is the handle of the object.
• PropertyName is a character vector specifying the property name.

For example, suppose you have the following coaxial transmission line:

h2 = rfckt.coaxial;

The following code retrieves the value of the inner radius and outer radius for the coaxial
transmission line:

ir = get(h2,'InnerRadius')
or = get(h2,'OuterRadius')

ir =
 7.2500e-004

or =
 0.0026

Retrieve All Property Values

To display a list of properties associated with a specific object as well as their current values, use the
get command without specifying a property name.

For example:

get(h2)
 Name: 'Coaxial Transmission Line'
 nPort: 2
 AnalyzedResult: []
 LineLength: 0.0100
 StubMode: 'NotAStub'
 Termination: 'NotApplicable'
 OuterRadius: 0.0026
 InnerRadius: 7.2500e-004
 MuR: 1
 EpsilonR: 2.3000
 LossTangent: 0
 SigmaCond: Inf

Note This list includes read-only properties that do not appear when you type set(h2). For a
coaxial transmission line object, the read-only properties are Name, nPort, and AnalyzedResult.

2 Model an RF Component

2-10

The Name and nPort properties are fixed by the toolbox. The AnalyzedResult property value is
calculated and set by the toolbox when you analyze the component at specified frequencies.

Reference Properties Directly Using Dot Notation
An alternative way to query for or modify property values is by structure-like referencing. The field
names for RF objects are the property names, so you can retrieve or modify property values with the
structure-like syntax.

• PropertyValue = rfobj.PropertyName stores the value of the PropertyName property of
the rfobj object in the PropertyValue variable. This command is equivalent to
PropertyValue = get(rfobj,'PropertyName').

• rfobj.PropertyName = PropertyValue sets the value of the PropertyName property to
PropertyValue for the rfobj object. This command is equivalent to
set(rfobj,'PropertyName',PropertyValue).

For example, typing

ckt = rfckt.amplifier('IntpType','cubic');
ckt.IntpType

gives the value of the property IntpType for the circuit object ckt.

ans =
 Cubic

Similarly,

ckt.IntpType = 'linear';

resets the interpolation method to linear.

You do not need to type the entire field name or use uppercase characters. You only need to type the
minimum number of characters sufficient to identify the property name uniquely. Thus entering the
commands

ckt = rfckt.amplifier('IntpType','cubic');
ckt.in

also produces

ans =
 Cubic

See Also

More About
• “Modify Component Data” on page 4-14
• “Create and Import Circuits” on page 4-5

 Specify or Import Component Data

2-11

Specify Operating Conditions

In this section...
“Available Operating Conditions” on page 2-12
“Set Operating Conditions” on page 2-12
“Display Available Operating Condition Values” on page 2-12

Available Operating Conditions
Agilent P2D and S2D files contain simulation results at one or more operating conditions. Operating
conditions define the independent parameter settings that are used when creating the file data. The
specified conditions differ from file to file.

When you import component data from a .p2d or .s2d file, the object contains property values for
several operating conditions. The available conditions depend on the data in the file. By default, RF
Toolbox software defines the object behavior using the property values that correspond to the
operating conditions that appear first in the file. To use other property values, you must select a
different operating condition.

Set Operating Conditions
To set the operating conditions of a circuit or data object, use a setop command of the form:

setop(,'Condition1',value1,...,'ConditionN',valueN,...)

where

• is the handle of the circuit or data object.
• Condition1,value1,...,ConditionN,valueN are the condition/value pairs that specify the

operating condition.

For example,

setop(myp2d, 'BiasL', 2, 'BiasU', 6.3)

specifies an operating condition of BiasL = 2 and BiasU = 6.3 for myp2d.

Display Available Operating Condition Values
To display a list of available operating condition values for a circuit or data object, use the setop
method.

setop(obj)

displays the available values for all operating conditions of the object obj.

setop(obj,'Condition1')

displays the available values for Condition1.

2 Model an RF Component

2-12

See Also
rftool

More About
• “Manage Circuits and Sessions” on page 4-21
• “Model an RF Network” on page 4-24
• “Analyze Circuits” on page 4-15

 Specify Operating Conditions

2-13

Process File Data for Analysis
In this section...
“Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters” on page 2-14
“Extract M-Port S-Parameters from N-Port S-Parameters” on page 2-15
“Cascade N-Port S-Parameters” on page 2-16

Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters
After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can convert a matrix of single-ended S-parameter data to a matrix of mixed-mode S-parameters.

This section contains the following topics:

• “Functions for Converting S-Parameters” on page 2-14
• “Convert S-Parameters” on page 2-14

Functions for Converting S-Parameters

To convert between 4-port single-ended S-parameter data and 2-port differential-, common-, and
cross-mode S-parameters, use one of these functions:

• s2scc — Convert 4-port, single-ended S-parameters to 2-port, common-mode S-parameters (Scc).
• s2scd — Convert 4-port, single-ended S-parameters to 2-port, cross-mode S-parameters (Scd).
• s2sdc — Convert 4-port, single-ended S-parameters to cross-mode S-parameters (Sdc).
• s2sdd — Convert 4-port, single-ended S-parameters to 2-port, differential-mode S-parameters

(Sdd).

To perform the above conversions all at once, or to convert larger data sets, use one of these
functions:

• s2smm — Convert 4N-port, single-ended S-parameters to 2N-port, mixed-mode S-parameters.
• smm2s — Convert 2N-port, mixed-mode S-parameters to 4N-port, single-ended S-parameters.

Conversion functions support a variety of port orderings. For more information on these functions,
see the corresponding reference pages.

Convert S-Parameters

In this example, use the toolbox to import 4-port single-ended S-parameter data from a file, convert
the data to 2-port differential S-parameter data, and create a new rfckt object to store the
converted data for analysis.

At the MATLAB prompt:

1 Type this command to import data from the file default.s4p:

SingleEnded4Port = read(rfdata.data,'default.s4p');
2 Type this command to convert 4-port single-ended S-parameters to 2-port mixed-mode S-

parameters:

2 Model an RF Component

2-14

DifferentialSParams = s2sdd(SingleEnded4Port.S_Parameters);

Note The S-parameters that you specify as input to the s2sdd function are the ones the toolbox
stores in the S_Parameters property of the rfdata.data object.

3 Type this command to create an rfckt.passive object that stores the 2-port differential S-
parameters for simulation:

DifferentialCkt = rfckt.passive('NetworkData', ...
 rfdata.network('Data', DifferentialSParams, 'Freq', ...
 SingleEnded4PortData.Freq));

Extract M-Port S-Parameters from N-Port S-Parameters
After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can extract a set of data with a smaller number of ports by terminating one or more ports with a
specified impedance.

This section contains the following topics:

• “Extract S-Parameters” on page 2-15
• “Extract S-Parameters From Imported File Data” on page 2-16

Extract S-Parameters

To extract M-port S-parameters from N-port S-parameters, use the snp2smp function with the
following syntax:

s_params_mp = snp2smp(s_params_np, z0, n2m_index, zt)

where

• s_params_np is an array of N-port S-parameters with a reference impedance z0.
• s_params_mp is an array of M-port S-parameters.
• n2m_index is a vector of length M specifying how the ports of the N-port S-parameters map to

the ports of the M-port S-parameters. n2m_index(i) is the index of the port from s_params_np
that is converted to the ith port of s_params_mp.

• zt is the termination impedance of the ports.

The following figure illustrates how to specify the ports for the output data and the termination of the
remaining ports.

 Process File Data for Analysis

2-15

For more details about the arguments to this function, see the snp2smp reference page.

Extract S-Parameters From Imported File Data

In this example, use the toolbox to import 16-port S-parameter data from a file, convert the data to 4-
port S-parameter data by terminating the remaining ports, and create a new rfckt object to store
the extracted data for analysis.

At the MATLAB prompt:

1 Type this command to import data from the file default.s16p into an rfdata.data object,
SingleEnded16PortData:

SingleEnded16PortData = read(rfdata.data,'default.s16p');
2 Type this command to convert 16-port S-parameters to 4-port S-parameters by using ports 1, 16,

2, and 15 as the first, second, third, and fourth ports, and terminating the remaining 12 ports
with an impedance of 50 ohms:
N2M_index = [1 16 2 15];
FourPortSParams = snp2smp(SingleEnded16PortData.S_Parameters, ...
 SingleEnded16PortData.Z0, N2M_index, 50);

Note The S-parameters that you specify as input to the snp2smp function are the ones the
toolbox stores in the S_Parameters property of the rfdata.data object.

3 Type this command to create an rfckt.passive object that stores the 4-port S-parameters for
simulation:

FourPortChannel = rfckt.passive('NetworkData', ...
 rfdata.network('Data', FourPortSParams, 'Freq', ...
 SingleEnded16PortData.Freq));

Cascade N-Port S-Parameters
After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can cascade two or more networks of N-port S-parameters.

2 Model an RF Component

2-16

To cascade networks of N-port S-parameters, use the cascadesparams function with the following
syntax:
s_params = cascadesparams(s1_params,s2_params,...,sn_params,nconn)

where

• s_params is an array of cascaded S-parameters.
• s1_params,s2_params,...,sn_params are arrays of input S-parameters.
• nconn is a positive scalar or a vector of size n-1 specifying how many connections to make

between the ports of the input S-parameters. cascadesparams connects the last port(s) of one
network to the first port(s) of the next network.

For more details about the arguments to this function, see the cascadesparams reference page.

Import and Cascade N-Port S-Parameters

In this example, use the toolbox to import 16-port and 4-port S-parameter file data and cascade the
two S-parameter networks by connecting the last three ports of the 16-port network to the first three
ports of the 4-port network. Then, create a new rfckt object to store the resulting network for
analysis.

At the MATLAB prompt:

1 Type these commands to import data from the files default.s16p and default.s4p, and
create the 16- and 4-port networks of S-parameters:

S_16Port = read(rfdata.data,'default.s16p');
S_4Port = read(rfdata.data,'default.s4p');
freq = [2e9 2.1e9];
analyze(S_16Port, freq);
analyze(S_4Port, freq);
sparams_16p = S_16Port.S_Parameters;
sparams_4p = S_4Port.S_Parameters;

2 Type this command to cascade 16-port S-parameters and 4-port S-parameters by connecting
ports 14, 15, and 16 of the 16-port network to ports 1, 2, and 3 of the 4-port network:

sparams_cascaded = cascadesparams(sparams_16p, sparams_4p,3)

cascadesparams creates a 14-port network. Ports 1–13 are the first 13 ports of the 16-port
network. Port 14 is the fourth port of the 4-port network.

3 Type this command to create an rfckt.passive object that stores the 14-port S-parameters for
simulation:

Ckt14 = rfckt.passive('NetworkData', ...
 rfdata.network('Data', sparams_cascaded, 'Freq', ...
 freq));

For more examples of how to use this function, see the cascadesparams reference page.

 Process File Data for Analysis

2-17

See Also

More About
• “S-Parameter Notation”
• “AMP File Data Sections” on page 5-2
• “Determining Parameter Formats” on page 6-2

2 Model an RF Component

2-18

Analyze and Plot RF Components
In this section...
“Analyze Networks in Frequency Domain” on page 2-19
“Visualize Component and Network Data” on page 2-19
“Compute and Plot Time-Domain Specifications” on page 2-24

Analyze Networks in Frequency Domain
RF Toolbox lets you analyze RF components and networks in the frequency domain. You use the
analyze function to analyze a circuit object over a specified set of frequencies.

For example, to analyze a coaxial transmission line from 1 GHz to 2.9 GHz in increments of 10 MHz:

ckt = rfckt.coaxial;
f = [1.0e9:1e7:2.9e9];
analyze(ckt,f);

Note For all circuits objects except those that contain data from a file, you must perform a
frequency-domain analysis with the analyze method before visualizing component and network
data. For circuits that contain data from a file, the toolbox performs a frequency-domain analysis
when you use the read method to import the data.

When you analyze a circuit object, the toolbox computes the circuit network parameters, noise figure
values, and output third-order intercept point (OIP3) values at the specified frequencies and stores
the result of the analysis in the object's AnalyzedResult property.

For more information, see the analyze function page.

Visualize Component and Network Data
The RF Toolbox lets you validate the behavior of circuit objects that represent RF components and
networks by plotting the following data:

• Large- and small-signal S-parameters
• Noise figure
• Output third-order intercept point
• Power data
• Phase noise
• Voltage standing-wave ratio
• Power gain
• Group delay
• Reflection coefficients
• Stability data
• Transfer function

 Analyze and Plot RF Components

2-19

This table summarizes the available plots and charts, along with the functions you can use to create
each one and a description of its contents.

Plot Type Functions Plot Contents
“Rectangular Plot” on page 2-21 plot

plotyy

loglog

semilogx

semilogy

Parameters as a function of frequency or,
where applicable, operating condition.
The available parameters include:

• S-parameters
• Noise figure
• Voltage standing-wave ratio (VSWR)
• OIP3

“Budget Plot” on page 2-21 plot Parameters as a function of frequency for
each component in a cascade, where the
curve for a given component represents
the cumulative contribution of each RF
component up to and including the
parameter value of that component.

“Mixer Spur Plot” on page 2-22 plot Mixer spur power as a function of
frequency for an rfckt.mixer object or
an rfckt.cascade object that contains
a mixer.

“Polar Plots and Smith Charts®”
on page 2-23

polar

smithplot

Polar plot: Magnitude and phase of S-
parameters as a function of frequency.

Smith plot: Real and imaginary parts of
S-parameters as a function of frequency,
used for analyzing the reflections caused
by impedance mismatch.

For each plot you create, you choose a parameter to plot and, optionally, a format in which to plot
that parameter. The plot format defines how the RF Toolbox displays the data on the plot. The
available formats vary with the data you select to plot. The data you can plot depends on the type of
plot you create.

Note You can use the listparam function to list the parameters of a specified circuit object that are
available for plotting. You can use the listformat function to list the available formats for a
specified circuit object parameter.

The following topics describe the available plots:

• “Rectangular Plot” on page 2-21
• “Budget Plot” on page 2-21
• “Mixer Spur Plot” on page 2-22
• “Polar Plots and Smith Charts®” on page 2-23

2 Model an RF Component

2-20

Rectangular Plot

You can plot any parameters that are relevant to your object on a rectangular plot. You can plot
parameters as a function of frequency for any object. When you import object data from a .p2d
or .s2d file, you can also plot parameters as a function of any operating condition from the file that
has numeric values, such as bias. In addition, when you import object data from a .p2d file, you can
plot large-signal S-parameters as a function of input power or as a function of frequency. These
parameters are denoted LS11, LS12, LS21, and LS22.

This table summarizes the methods that are available in the toolbox for creating rectangular plots
and describes the uses of each one. For more information on a particular type of plot, follow the link
in the table to the documentation for that method.

Method Description
plot Plot of one or more object parameters
plotyy Plot of one or more object parameters with y-axes on both the

left and right sides
semilogx Plot of one or more object parameters using a log scale for the X-

axis
semilogy Plot of one or more object parameters using a log scale for the Y-

axis
loglog Plot of one or more object parameters using a log-log scale

Budget Plot

You use the link budget or budget plot to understand the individual contribution of each component
to a plotted parameter value in a cascaded network with multiple components. The budget plot shows
one or more curves of parameter values as a function of frequency, ordered by the circuit index of the
cascaded network.

Consider the following cascaded network:

casc = rfckt.cascade('Ckts',...
 {rfckt.amplifier,rfckt.lcbandpasspi,rfckt.txline})

This figure shows how the circuit index is assigned to each component in the cascade, based on its
sequential position in the network.

You create a 3-D budget plot for this cascade using the plot method with the second argument set to
'budget', as shown in the following command:

analyze(casc,linspace(1e9,3e9,100));
plot(casc,'budget','s21')

Note that you have to analyze your circuit before plotting the budget plot and by default the budget
plot is a 2-D plot. If you specify the array of frequencies in the analyze function you can visualize the

 Analyze and Plot RF Components

2-21

budget results in 3-D. A curve on the budget plot for each circuit index represents the contributions
to the parameter value of the RF components up to that index. This figure shows the budget plot.

If you specify two or more parameters, the RF Toolbox puts the parameters in a single plot. You can
only specify a single format for all the parameters.

Mixer Spur Plot

You use the mixer spur plot to understand how mixer nonlinearities affect output power at the desired
mixer output frequency and at the intermodulation products that occur at the following frequencies:

fout = N ∗ f in + M ∗ fLO

where

• f in is the input frequency.
• fLO is the local oscillator frequency.
• N and M are integers.

The RF toolbox calculates the output power from the mixer intermodulation table (IMT). These tables
are described in detail in the “Visualize Mixer Spurs” on page 7-99 example.

The mixer spur plot shows power as a function of frequency for an rfckt.mixer object or an
rfckt.cascade object that contains a mixer. By default, the plot is three-dimensional and shows a
stem plot of power as a function of frequency, ordered by the circuit index of the object. You can
create a two-dimensional stem plot of power as a function of frequency for a single circuit index by
specifying the index in the mixer spur plot command.

Consider the following cascaded network:

FirstCkt = rfckt.amplifier('NetworkData', ...
 rfdata.network('Type', 'S', 'Freq', 2.1e9, ...
 'Data', [0,0;10,0]), 'NoiseData', 0, 'NonlinearData', inf);
SecondCkt = read(rfckt.mixer, 'samplespur1.s2d');
ThirdCkt = rfckt.lcbandpasstee('L', [97.21 3.66 97.21]*1e-9, ...
 'C', [1.63 43.25 1.63]*1.0e-12);
CascadedCkt = rfckt.cascade('Ckts', ...
 {FirstCkt, SecondCkt, ThirdCkt});

This shows how the circuit index is assigned to the components in the cascade, based on its
sequential position in the network.

2 Model an RF Component

2-22

• Circuit index 0 corresponds to the cascade input.
• Circuit index 1 corresponds to the LNA output.
• Circuit index 2 corresponds to the mixer output.
• Circuit index 3 corresponds to the filter output.

You create a spur plot for this cascade using the plot method with the second argument set to
'mixerspur', as shown in the following command:

plot(CascadedCkt,'mixerspur')

Within the three dimensional plot, the stem plot for each circuit index represents the power at that
circuit index. This figure shows the mixer spur plot.

For more information on mixer spur plots, see the plot reference page.

Polar Plots and Smith Charts®

You can use the RF toolbox to generate Polar plots and Smith charts. If you specify two or more
parameters, the RF toolbox puts the parameters in a single plot.

The following table describes the Polar plot and Smith charts options, as well as the available
parameters.

Note LS11, LS12, LS21, and LS22 are large-signal S-parameters. You can plot these parameters as a
function of input power or as a function of frequency.

 Analyze and Plot RF Components

2-23

Plot Type Method Parameter
Polar plane polar S11, S12, S21, S22

LS11, LS12, LS21, LS22
(Objects with data from a P2D
file only)

Z Smith chart smithplot with type
argument set to 'z'

S11, S22

LS11, LS22 (Objects with data
from a P2D file only)

Y Smith chart smithplot with type
argument set to 'y'

S11, S22

LS11, LS22 (Objects with data
from a P2D file only)

ZY Smith chart smithplot with type
argument set to 'zy'

S11, S22

LS11, LS22 (Objects with data
from a P2D file only)

By default, the RF toolbox plots the parameter as a function of frequency. When you import block data
from a .p2d or .s2d file, you can also plot parameters as a function of any operating condition from
the file that has numeric values, such as bias.

Note The circle method lets you place circles on a Smith Chart to depict stability regions and
display constant gain, noise figure, reflection and immittance circles. For more information about this
function, see the circle reference page or “Designing Matching Networks for Low Noise Amplifiers”
on page 7-123 example about designing matching networks.

Compute and Plot Time-Domain Specifications
The RF toolbox lets you compute and plot time-domain characteristics for RF components.

This section contains the following topics:

• “Compute Network Transfer Function” on page 2-24
• “Fit Model Object to Circuit Object Data” on page 2-25
• “Compute and Plot Time-Domain Response” on page 2-25

Compute Network Transfer Function

You use the s2tf function to convert 2-port S-parameters to a transfer function. The function returns
a vector of transfer function values that represent the normalized voltage gain of a 2-port network.

The following code illustrates how to read a file data into a passive circuit object, extract the 2-port S-
parameters from the object, and compute the transfer function of the data at the frequencies for
which the data is specified. Here z0 is the reference impedance of the S-parameters, zs is the source
impedance, and zl is the load impedance. See the s2tf reference page for more information on how
these impedances are used to define the gain.

PassiveCkt = rfckt.passive('File','passive.s2p')
z0=50; zs=50; zl=50;

2 Model an RF Component

2-24

[SParams, Freq] = extract(PassiveCkt, 'S Parameters', z0);
TransFunc = s2tf(SParams, z0, zs, zl);

Fit Model Object to Circuit Object Data

You use the rationalfit function to fit a rational function to the transfer function of a passive
component. The rationalfit function returns an rfmodel object that represents the transfer
function analytically.

The following code illustrates how to use the rationalfit function to create an
rfmodel.rational object that contains a rational function model of the transfer function that you
created in the previous example.

RationalFunc = rationalfit(Freq, TransFunc)

To find out how many poles the RF toolbox used to represent the data, look at the length of the A
vector of the RationalFunc model object.

nPoles = length(RationalFunc.A)

Note The number of poles is important if you plan to use the RF model object to create a model for
use in another simulator, because a large number of poles can increase simulation time. For
information on how to represent a component accurately using a minimum number of poles, see
“Represent Circuit Object with Model Object” on page 3-4.

Use the freqresp function to compute the frequency response of the fitted data. To validate the
model fit, plot the transfer function of the original data and the frequency response of the fitted data.

Resp = freqresp(RationalFunc, Freq);
plot(Freq, 20*log10(abs(TransFunc)), 'r', ...
 Freq, 20*log10(abs(Resp)), 'b--');
ylabel('Magnitude of H(s) (decibels)');
xlabel('Frequency (Hz)');
legend('Original', 'Fitting result');
title(['Rational fitting with ', int2str(nPoles), ' poles']);

Compute and Plot Time-Domain Response

You use the timeresp function to compute the time-domain response of the transfer function that
RationalFunc represents. This code illustrates how to create a random input signal, compute the
time-domain response of RationalFunc to the input signal, and plot the results.

SampleTime=1e-11;
NumberOfSamples=4750;
OverSamplingFactor = 25;
InputTime = double((1:NumberOfSamples)')*SampleTime;
InputSignal = ...
 sign(randn(1, ceil(NumberOfSamples/OverSamplingFactor)));
InputSignal = repmat(InputSignal, [OverSamplingFactor, 1]);
InputSignal = InputSignal(:);

[tresp,t]=timeresp(RationalFunc,InputSignal,SampleTime);
plot(t*1e9,tresp);
title('Fitting Time-Domain Response', 'fonts', 12);
ylabel('Response to Random Input Signal');
xlabel('Time (ns)');

 Analyze and Plot RF Components

2-25

For more information about computing the time response of a model object, see the timeresp
function.

See Also

More About
• “RF Analysis”
• “Export Component Data to File” on page 2-27
• “Export RF Objects” on page 4-18

2 Model an RF Component

2-26

Export Component Data to File

In this section...
“Available Export Formats” on page 2-27
“How to Export Object Data” on page 2-27
“Export Object Data” on page 2-28

Available Export Formats
RF Toolbox software lets you export data from any rfckt object or from an rfdata.data object to
industry-standard data files and MathWorks AMP files. This export capability lets you store data for
use in other simulations.

Note The toolbox also lets you export data from an rfmodel object to a Verilog-A file. For
information on how to do this, see “Export Verilog-A Model” on page 3-4.

You can export data to the following file formats:

• Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP formats specify the
network parameters and noise information for measured and simulated data.

For more information about Touchstone files, see https://ibis.org/connector/
touchstone_spec11.pdf.

• MathWorks amplifier (AMP) file format — Specifies amplifier network parameters, output power
versus input power, noise data and third-order intercept point.

For more information about .amp files, see “AMP File Data Sections” on page 5-2.

How to Export Object Data
To export data from a circuit or data object, use a write command of the form

status = write(obj,'filename');

where

• status is a return value that indicates whether the write operation was successful.
• obj is the handle of the circuit or rfdata.data object.
• filename is the name of the file that contains the data.

For example,

status = write(rfckt.amplifier, 'myamp.amp');

exports data from an rfckt.amplifier object to the file myamp.amp.

 Export Component Data to File

2-27

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

Export Object Data
In this example, use the toolbox to create a vector of S-parameter data, store it in an rfdata.data
object, and export it to a Touchstone file.

At the MATLAB prompt:

1 Type the following to create a vector, s_vec, of S-parameter values at three frequency values:

s_vec(:,:,1) = ...
 [-0.724725-0.481324i, -0.685727+1.782660i; ...
 0.000000+0.000000i, -0.074122-0.321568i];
s_vec(:,:,2) = ...
 [-0.731774-0.471453i, -0.655990+1.798041i; ...
 0.001399+0.000463i, -0.076091-0.319025i];
s_vec(:,:,3) = ...
 [-0.738760-0.461585i, -0.626185+1.813092i; ...
 0.002733+0.000887i, -0.077999-0.316488i];

2 Type the following to create an rfdata.data object called txdata with the default property
values:

txdata = rfdata.data;
3 Type the following to set the S-parameter values of txdata to the values you specified in s_vec:

txdata.S_Parameters = s_vec;
4 Type the following to set the frequency values of txdata to [1e9 2e9 3e9]:

txdata.Freq=1e9*[1 2 3];
5 Type the following to export the data in txdata to a Touchstone file called test.s2p:

write(txdata,'test')

See Also

More About
• “Export Verilog-A Model” on page 3-4
• “Export RF Objects” on page 4-18

2 Model an RF Component

2-28

Basic Operations with RF Objects
Read and Analyze RF Data from a Touchstone Data File

In this example, you create an sparameters object by reading the S-Parameters of a 2-port passive
network stored in the Touchstone format data file, passive.s2p.

Read S-Parameter data from a data file. Use the RF Toolbox™ sparameters command to read the
Touchstone data file, passive.s2p. This file contains 50-ohm S-Parameters at frequencies ranging from
315 kHz to 6 GHz. This operation creates an sparameters object, S_50, and stores data from the file
in the object's properties.

S_50 = sparameters('passive.s2p');

Use sparameters to convert the 50-ohm S-Parameters in the sparameters object, to 75-ohm S-
Parameters and save them in the variable S_75. You can easily convert between parameters, for
example, for Y-Parameters from the sparameters object use yparameters and save them in the
variable Y.

Znew = 75;
S_75 = sparameters(S_50, Znew);
Y = yparameters(S_75);

Plot the S11 parameters. Use the smithplot command to plot the 75-ohm S11 parameters on a
Smith® Chart:

smithplot(S_75,1,1)

 Basic Operations with RF Objects

2-29

View the 75-ohm S-Parameters and Y-Parameters at 6 GHz. Type the following set of commands at the
MATLAB® prompt to display the 2-port 75-ohm S-Parameter values and the 2-port Y-Parameter
values at 6 GHz.

freq = S_50.Frequencies;
f = freq(end)

f = 6.0000e+09

s_6GHz = S_75.Parameters(:,:,end)

s_6GHz = 2×2 complex

 -0.0764 - 0.5401i 0.6087 - 0.3018i
 0.6094 - 0.3020i -0.1211 - 0.5223i

y_6GHz = Y.Parameters(:,:,end)

y_6GHz = 2×2 complex

 0.0210 + 0.0252i -0.0215 - 0.0184i
 -0.0215 - 0.0185i 0.0224 + 0.0266i

For more information, see the sparameters, yparameters, smithplot reference pages.

De-Embed S-Parameters

The Touchstone data file samplebjt2.s2p contains S-Parameter data collected from a bipolar transistor
in a test fixture. The input of the fixture has a bond wire connected to a bond pad. The output of the
fixture has a bond pad connected to a bond wire.

The configuration of the bipolar transistor, which is the device under test (DUT), and the fixture is
shown in the following figure.

In this example, you remove the effects of the fixture and extract the S-parameters of the DUT.

Create RF circuit objects.

Create a sparameters object for the measured S-Parameters by reading the Touchstone data file
samplebjt2.s2p. Then, create two more circuit objects, one each for the input pad and output pad.

measured_data = sparameters('samplebjt2.s2p');

L_left = inductor(1e-9);
C_left = capacitor(100e-15);
input_pad = circuit('inputpad');

2 Model an RF Component

2-30

add(input_pad,[1 2],L_left)
add(input_pad,[2 0],C_left)
setports(input_pad,[1 0],[2 0])

L_right = inductor(1e-9);
C_right = capacitor(100e-15);
output_pad = circuit('outputpad');
add(output_pad,[3 0],C_right)
add(output_pad,[3 4],L_right)
setports(output_pad,[3 0],[4 0])

Analyze the input pad and output pad circuit objects. Analyze the circuit objects at the frequencies at
which the S-Parameters are measured.

freq = measured_data.Frequencies;
input_pad_sparams = sparameters(input_pad,freq);
output_pad_sparams = sparameters(output_pad,freq);

De-embed the S-parameters.

Extract the S-Parameters of the DUT from the measured S-Parameters by removing the effects of the
input and output pads.

de_embedded_sparams = deembedsparams(measured_data,...
 input_pad_sparams, output_pad_sparams);

Plot the measured and de-embedded S11 parameters. Type the following set of commands at the
MATLAB® prompt to plot both the measured and the de-embedded S11 parameters on a Z Smith®
Chart:

figure;
smithplot(measured_data,1,1);
hold on
h = smithplot(de_embedded_sparams,1,1);
h.LineStyle = {'-';'--'};
h.ColorOrder = [1 0 0;0 0 1];
h.LegendLabels = {'Measured S11', 'De-embedded S11'};

 Basic Operations with RF Objects

2-31

Plot the measured and de-embedded S22 parameters. Type the following set of commands at the
MATLAB® prompt to plot the measured and the de-embedded S22 parameters on a Z Smith® Chart:

figure;
smithplot(measured_data,2,2);
hold on
h = smithplot(de_embedded_sparams,2,2);
h.LineStyle = {'-';':'};
h.ColorOrder = [1 0 0;0 0 1];
h.LegendLabels = {'Measured S22', 'De-embedded S22'};

2 Model an RF Component

2-32

Plot the measured and de-embedded S21 parameters. Type the following set of commands at the
MATLAB® prompt to plot the measured and the de-embedded S21 parameters, in decibels, on an X-Y
plane:

figure
rfplot(measured_data,2,1,'db','r');
hold on
rfplot(de_embedded_sparams,2,1,'db',':b');
legend('Measured S_{21}', 'De-embedded S_{21}');

 Basic Operations with RF Objects

2-33

See Also

More About
• “RF Data Objects” on page 1-2
• “RF Circuit Objects” on page 1-4
• “RF Model Objects” on page 1-8
• “RF Network Parameter Objects” on page 1-10

2 Model an RF Component

2-34

Export Verilog-A Models

• “Model RF Objects Using Verilog-A” on page 3-2
• “Export Verilog-A Model” on page 3-4

3

Model RF Objects Using Verilog-A
In this section...
“Overview” on page 3-2
“Behavioral Modeling Using Verilog-A” on page 3-2
“Supported Verilog-A Models” on page 3-2

Overview
Verilog-A is a language for modeling the high-level behavior of analog components and networks.
Verilog-A describes components mathematically, for fast and accurate simulation.

RF Toolbox software lets you export a Verilog-A description of your circuit. You can create a Verilog-A
model of any passive RF component or network and use it as a behavioral model for transient analysis
in a third-party circuit simulator. This capability is useful in signal integrity engineering. For example,
you can import the measured four-port S-parameters of a backplane into the toolbox, export a
Verilog-A model of the backplane to a circuit simulator, and use the model to determine the
performance of your driver and receiver circuitry when they are communicating across the
backplane.

Behavioral Modeling Using Verilog-A
The Verilog-A language is a high-level language that uses modules to describe the structure and
behavior of analog systems and their components. A module is a programming building block that
forms an executable specification of the system.

Verilog-A uses modules to capture high-level analog behavior of components and systems. Modules
describe circuit behavior in terms of

• Input and output nets characterized by predefined Verilog-A disciplines that describe the
attributes of the nets.

• Equations and module parameters that define the relationship between the input and output nets
mathematically.

When you create a Verilog-A model of your circuit, the toolbox writes a Verilog-A module that
specifies circuit's input and output nets and the mathematical equations that describe how the circuit
operates on the input to produce the output.

Supported Verilog-A Models
RF Toolbox software lets you export a Verilog-A model of an rfmodel object. The toolbox provides
one rfmodel object, rfmodel.rational, that you can use to represent any RF component or
network for export to Verilog-A.

The rfmodel.rational object represents components as rational functions in pole-residue form, as
described in the rfmodel.rational reference page. This representation can include complex poles
and residues, which occur in complex-conjugate pairs.

The toolbox implements each rfmodel.rational object as a series of Laplace Transform S-domain
filters in Verilog-A using the numerator-denominator form of the Laplace transform filter:

3 Export Verilog-A Models

3-2

H(s) =
∑

k = 0

M
nksk

∑
k = 0

N
dksk

where

• M is the order of the numerator polynomial.
• M is the order of the denominator polynomial.
• nk is the coefficient of the kth power of s in the numerator.
• dk is the coefficient of the kth power of s in the denominator.

The number of poles in the rational function is related to the number of Laplace transform filters in
the Verilog-A module. However, there is not a one-to-one correspondence between the two. The
difference arises because the toolbox combines each pair of complex-conjugate poles and the
corresponding residues in the rational function to form a Laplace transform numerator and
denominator with real coefficients. the toolbox converts the real poles of the rational function directly
to a Laplace transform filter in numerator-denominator form.

See Also

More About
• “Export Verilog-A Model” on page 3-4

 Model RF Objects Using Verilog-A

3-3

Export Verilog-A Model
In this section...
“Represent Circuit Object with Model Object” on page 3-4
“Write Verilog-A Module” on page 3-5

Represent Circuit Object with Model Object
Before you can write a Verilog-A model of an RF circuit object, you need to create an
rfmodel.rational object to represent the component.

There are two ways to create an RF model object:

• You can fit a rational function model to the component data using the rationalfit function.
• You can use the rfmodel.rational constructor to specify the pole-residue representation of the

component directly.

This section discusses using a rational function model. For more information on using the constructor,
see the rfmodel.rational reference page.

When you use the rationalfit function to create an rfmodel.rational object that represents an
RF component, the arguments you specify affect how quickly the resulting Verilog-A model runs in a
circuit simulator.

You can use the rationalfit function with only the two required arguments. The syntax is:

model_obj = rationalfit(freq,data)

where

• model_obj is a handle to the rational function model object.
• freq is a vector of frequency values that correspond to the data values.
• data is a vector that contains the data to fit.

For faster simulation, create a model object with the smallest number of poles required to accurately
represent the component. To control the number of poles, use the syntax:

model_obj = rationalfit(freq,data,tol,weight,delayfactor)

where

• tol — the relative error-fitting tolerance, in decibels. Specify the largest acceptable tolerance for
your application. Using tighter tolerance values may force the rationalfit function to add more
poles to the model to achieve a better fit.

• weight — a vector that specifies the weighting of the fit at each frequency.
• delayfactor — a value that controls the amount of delay used to fit the data. Delay introduces a

phase shift in the frequency domain that may require a large number of poles to fit using a
rational function model. When you specify the delay factor, the rationalfit function represents
the delay as an exponential phase shift. This phase shift allows the function to fit the data using
fewer poles.

These arguments are described in detail in the rationalfit function reference page.

3 Export Verilog-A Models

3-4

Note You can also specify the number of poles directly using the npoles argument. The model
accuracy is not guaranteed with approach, so you should not specify npoles when accuracy is
critical. For more information on the npoles argument, see the rationalfit reference page.

If you plan to integrate the Verilog-A module into a large design for simulation using detailed models,
such as transistor-level circuit models, the simulation time consumed by a Verilog-A module may have
a trivial impact on the overall simulation time. In this case, there is no reason to take the time to
optimize the rational function model of the component.

For more information on the rationalfit function arguments, see the rationalfit reference
page.

Write Verilog-A Module
You use the writeva method to create a Verilog-A module that describes the RF model object. This
method writes the module to a specified file. Use the syntax:

status = writeva(model_obj,'obj1',{'inp','inn'},{'outp','outn'})

to write a Verilog-A module for the model object model_obj to the file obj1.va. The module has
differential input nets, inp and inn, and differential output nets, outp and outn. The method
returns status, a logical value of true if the operation is successful and false otherwise.

The write reference page describes the method arguments in detail.

An example of exporting a Verilog-A module appears in the RF Toolbox example, “Modeling a High-
Speed Backplane (Rational Function to a Verilog-A Module)” on page 7-69.

See Also

More About
• “Model RF Objects Using Verilog-A” on page 3-2
• “Export Component Data to File” on page 2-27
• “Export RF Objects” on page 4-18

 Export Verilog-A Model

3-5

The RF Design and Analysis Tool

• “The RF Design and Analysis Tool” on page 4-2
• “Create and Import Circuits” on page 4-5
• “Modify Component Data” on page 4-14
• “Analyze Circuits” on page 4-15
• “Export RF Objects” on page 4-18
• “Manage Circuits and Sessions” on page 4-21
• “Model an RF Network” on page 4-24

4

The RF Design and Analysis Tool
In this section...
“What is the RF Design and Analysis App?” on page 4-2
“Open the RF Design and Analysis App” on page 4-2
“The RF Design and Analysis Window” on page 4-2
“The RF Design and Analysis App Workflow” on page 4-3

What is the RF Design and Analysis App?
The RF Design and Analysis is an app that provides a visual interface for creating and analyzing RF
components and networks. You can use the RF Design and Analysis app as a convenient alternative to
the command-line RF circuit design and analysis objects and methods that come with RF Toolbox
software.

The RF Design and Analysis app provides the ability to

• Create and import circuits.
• Set circuit parameters.
• Analyze circuits.
• Display circuit S-parameters in tabular form and on X-Y plots, polar plots, and Smith Charts.
• Export circuit data to the MATLAB workspace and to data files.

Open the RF Design and Analysis App
To open the app window, type the following at the MATLAB prompt:

rftool

For a description of the RF Design and Analysis user interface , see “The RF Design and Analysis
Window” on page 4-2. To learn how to create and import circuits, see “Create and Import Circuits”
on page 4-5.

Note The work you do with this app is organized into sessions. Each session is a collection of
independent RF circuits, which can be RF components or RF networks. You can save sessions and
then load them for later use. For more information, see “Working with the RF Design and Analysis
App Sessions” on page 4-22.

The RF Design and Analysis Window
The app window consists of the following three panes:

• RF Component List

Shows the components and networks in the session. The top-level node is the session.
• Component Parameters

4 The RF Design and Analysis Tool

4-2

Displays options and settings pertaining to the node you selected in the RF Component List
pane.

• Analysis

Displays options and settings pertaining to the circuit analysis and results display. After you
analyze the circuit, this pane displays the analysis results and provides an interface for you to
view the S-parameter data and modify the displayed plots.

The following figure shows the app window.

The RF Design and Analysis App Workflow
When you analyze a circuit using the app user interface your workflow might include the following
tasks:

1 Build the circuit by

• Creating RF components and networks.
• Importing components and networks from the MATLAB workspace or from a data file.

See “Create and Import Circuits” on page 4-5.
2 Specify component data.

See “Modify Component Data” on page 4-14.

 The RF Design and Analysis Tool

4-3

3 Analyze the circuit.

See “Analyze Circuits” on page 4-15.
4 Export the circuit to the MATLAB workspace or to a file.

See “Export RF Objects” on page 4-18.

See Also
rftool

4 The RF Design and Analysis Tool

4-4

Create and Import Circuits
In this section...
“Circuits in the RF Design and Analysis App” on page 4-5
“Create RF Components” on page 4-5
“Create RF Networks” on page 4-7
“Import RF Objects into the RF Design and Analysis App” on page 4-11

Circuits in the RF Design and Analysis App
In this app, you can create circuits that include RF components and RF networks. Networks can
contain both components and other networks.

Note In the circuit object command line interface, you create networks by building components and
then connecting them together to form a network. In contrast, you build networks in the app by
creating a network and then populating it with components.

Create RF Components
This section contains the following topics:

• “Available RF Components” on page 4-5
• “Add an RF Component to a Session” on page 4-6

Available RF Components

The following table lists the RF components you can create using the app and the corresponding RF
Toolbox object.

RF Component Corresponding RF Object
Data File rfckt.datafile
Delay Line rfckt.delay
Coaxial Transmission Line rfckt.coaxial
Coplanar Waveguide Transmission Line rfckt.cpw
Microstrip Transmission Line rfckt.mixer
Parallel-Plate Transmission Line rfckt.parallelplate
Transmission Line rfckt.txline
Two-Wire Transmission Line rfckt.twowire
Series RLC rfckt.seriesrlc
Shunt RLC rfckt.shuntrlc
LC Bandpass Pi rfckt.lcbandpasspi
LC Bandpass Tee rfckt.lcbandpasstee
LC Bandstop Pi rfckt.lcbandstoppi

 Create and Import Circuits

4-5

RF Component Corresponding RF Object
LC Bandstop Tee rfckt.lcbandstoptee
LC Highpass Pi rfckt.lchighpasspi
LC Highpass Tee rfckt.lchighpasstee
LC Lowpass Pi rfckt.lclowpasspi
LC Lowpass Tee rfckt.lclowpasspi

Add an RF Component to a Session

1 In the RF Component List pane, click Add to open the Create Network or Component dialog
box.

2 In the Create Network or Component dialog box, select Component.
3 In the Component Name field, enter a name for the component. This name is used to identify

the component in the RF Component List pane. For example, Microstrip Component.
4 From the Component Type menu, select the type of RF component you want to create. For

example, Microstrip Transmission Line.

4 The RF Design and Analysis Tool

4-6

5 Adjust the parameter values as necessary.

Note You can accept the default values for some or all of the parameters and then change them
later. For information on modifying the parameter values of an existing component, see “Modify
Component Data” on page 4-14.

6 Click OK.

The app adds the component to your session.

Create RF Networks
You create an RF network using the app by adding a network to the session and then adding
components to the network.

This section contains the following topics:

• “Available RF Networks” on page 4-8
• “Add an RF Network to a Session” on page 4-8

 Create and Import Circuits

4-7

• “Populate an RF Network” on page 4-9
• “Reorder Circuits Within a Network” on page 4-11

Available RF Networks

The following table lists the RF networks you can create using the app.

RF Network Corresponding RF Toolbox Object
Cascaded Network rfckt.cascade
Series Connected Network rfckt.series
Parallel Connected Network rfckt.parallel
Hybrid Connected Network rfckt.hybrid
Inverse Hybrid Connected Network rfckt.hybridg

Add an RF Network to a Session

1 In the RF Component List pane, click Add to open the Create Network or Component dialog
box.

2 In the Create Network or Component dialog box, select the Network option button.
3 In the Network Name field, enter a name for the component. This name is used to identify the

network in the RF Component List pane. For example, Series1.
4 From the Network Type menu, select the type of RF network you want to create. For example,

Series Connected Network.

4 The RF Design and Analysis Tool

4-8

5 Click OK.

The RF Component List pane shows the new network.

Populate an RF Network

After you create a network using the app, you must populate it with RF components and networks.
You insert a component or network into a network in much the same way you add one to a session.

To populate an RF network:

1 In the RF Component List pane, select the network component you want to modify. Then, in the
Component Parameters pane, click Insert.

 Create and Import Circuits

4-9

The Insert Component or Network dialog box appears.

2 Click Component or Network in the Insert Component or Network dialog box to add either a
component or a network.

Enter the component or network name, and select the appropriate type. If you are inserting a
component, modify the parameter values as necessary. See “Add an RF Component to a Session”
on page 4-6 or “Add an RF Network to a Session” on page 4-8 for details.

As you insert components and networks into a network, they are reflected in the RF Component List
and Component Parameters panes. The figure below shows an example of a cascaded network that
contains two components and a network. The subnetwork, in turn, contains two components.

4 The RF Design and Analysis Tool

4-10

Reorder Circuits Within a Network

To change the order of the components and networks within a network:

1 In the RF Component List pane, select the network whose circuits you want to reorder.
2 In the Component Parameters pane, select the circuit whose position you want to change.
3 Click Up or Down until the circuit is where you want it.

To reverse the positions of Component1 and Network1 in the network shown in the following figure:

1 Select Network in the RF Component List pane.
2 Select Component1 in the Component Parameters pane.
3 Click Down in the Component Parameters pane.

Import RF Objects into the RF Design and Analysis App
The RF Design and Analysis app lets you import RF objects from your workspace and from files to the
top level of your session. You can import the following types of objects:

• Complex component and network objects that you created in your workspace using RF Toolbox
objects.

• Components and networks you exported into your workspace from another session.

For information on exporting components and networks from another session, see “Export RF
Objects” on page 4-18.

After you have imported an object, you can change its name and work with it as you would any other
component or network.

This section contains the following topics:

• “Import from the Workspace” on page 4-11
• “Import from a File into a Session” on page 4-12
• “Import from a File into a Network” on page 4-13

Import from the Workspace

To import RF circuit objects from the MATLAB workspace into your session:

1 Select Import From Workspace from the File menu. The Import from Workspace dialog box
appears. This dialog box lists the handles of all RF circuit (rfckt) objects in the workspace.

 Create and Import Circuits

4-11

2 From the list of RF circuit objects, select the object you want to import, and click OK.

The object is added to your session with the same name as the object handle. If there is already a
circuit by that name, the app appends a numeral, starting with 1, to the new circuit name.

Import from a File into a Session

You can import RF components from the following types of files into the top level of your session:

• S2P
• Y2P
• Z2P
• H2P

To import a component from one of these files:

1 Select Import From File from the File menu. A file browser appears.
2 Select the file type you want to import.
3 Select the name of the file to import from the list of files in the browser.

4 The RF Design and Analysis Tool

4-12

4 Click Open to add the object to your session as a component.

The name of the component is the file name without the extension. If there is already a
component by that name, the app appends a numeral, starting with 1, to the new component
name. The file name, including the extension, appears as the value of the component's File
Name parameter. If the file is not on the MATLAB path, the value of the File Name parameter
also contains the file path.

Import from a File into a Network

You can import RF components from the following types of files into a network:

• S2P
• Y2P
• Z2P
• H2P

To import an RF component from a file into a network:

1 Insert a Data File component into the network.

For more information on how add a component to a network, see “Populate an RF Network” on
page 4-9.

2 Specify the name of the file from which to import the component in one of two ways:

• Select the file name in the file name and type in the Import from File dialog box, and click
Open.

• Click Cancel to get out of the Import from File dialog box, and enter the file name in the
Value field across from the File Name parameter in the Insert Component or Network dialog
box.

“Model an RF Network” on page 4-24 shows this process.

See Also
rftool

More About
• “AMP File Data Sections” on page 5-2
• “Modify Component Data” on page 4-14

 Create and Import Circuits

4-13

Modify Component Data
You can change the values of component parameters that you create and import. The component
parameters in the app correspond to the component properties that you specify in the command line.

To modify these values:

1 Select the component in the RF Component List pane.
2 In the Component Parameters pane, select the value you want to change, and enter the new

value.

Valid values for component parameters are listed on the corresponding RF Toolbox reference
page. Use the links in “Available RF Components” on page 4-5 and “Available RF Networks” on
page 4-8 to access these pages.

3 Click Apply.

See Also
rftool

More About
• “Create and Import Circuits” on page 4-5

4 The RF Design and Analysis Tool

4-14

Analyze Circuits
After you add your circuits, you can analyze them using the app:

1 Select the component or network you want to analyze in the RF Component List pane of the RF
Design and Analysis app.

2 In the Analysis pane:

• Enter [1e8:5e6:2e9], the analysis frequency range and step size in hertz, in the Frequency
field.

This value specifies an analysis from 0.1 GHz to 2 GHz in 5 MHz steps.
• Enter 50, the reference impedance in ohms, in the Reference impedance field.

Note Alternately, you can specify the Frequency and Reference impedance values as
MATLAB workspace variables or as valid MATLAB expressions.

3 Click Analyze.

The Analysis pane displays a Smith Chart, an XY plot, and a polar plot of the analyzed circuit.

 Analyze Circuits

4-15

4 Select or deselect the S-parameter check boxes at the bottom of each plot to customize the
parameters that the plot displays. Use the drop-down list at the top of each plot to customize the
plot options.

The plots automatically update as you change the check box and drop-down list options on the
user interface.

5 Click Data in the upper-right corner of the Analysis pane to view the data in tabular form. The
following figure shows the analysis data for the LC Bandpass Pi component at the frequencies
and reference impedance shown in step 2.

4 The RF Design and Analysis Tool

4-16

Note The magnitude, in decibels, of S11 is listed in the 20log10[S11] column and the phase, in
degrees, of S11 is listed in the <S11 column.

See Also
rftool

More About
• “Specify Operating Conditions” on page 2-12
• “Model an RF Network” on page 4-24
• “Manage Circuits and Sessions” on page 4-21

 Analyze Circuits

4-17

Export RF Objects
In this section...
“Export Components and Networks” on page 4-18
“Export to Workspace” on page 4-18
“Export to a File” on page 4-19

Export Components and Networks
You can export RF components and networks that you create and refine it in the RF Design and
Analysis app to your MATLAB workspace or to files. You export circuits for the following reasons:

• To perform additional analysis using RF Toolbox functions that are not available in the app.
• To incorporate them into larger RF systems.
• To import them into another session.

Export to Workspace
The RF Design and Analysis app enables you to export components and networks to the MATLAB
workspace. In your workspace, you can use the resulting circuit (rfckt) object as you would any
other RF circuit object.

To export a component or network to the workspace:

1 Select the component or network to export in the RF Component List pane of the app.

2 Select Export to Workspace from the File menu.
3 Enter a name for the exported object's handle in the Variable name field and click OK. The

default name is the name of the component or network prefaced with the character vector
'rft_'.

4 The RF Design and Analysis Tool

4-18

The component or network becomes accessible in the workspace via the specified object handle.

Export to a File
The RF Design and Analysis app lets you export components and networks to files in S2P format.

Note You must analyze a component or network in the RF Design and Analysis app before you can
export it to a file. See “Analyze Circuits” on page 4-15 for more information.

To export a component or network to a file:

1 Select the component or network to export in the RF Component List pane of the app.

2 Select Export To File from the File menu to open the file browser.

 Export RF Objects

4-19

3 Browse to the appropriate directory. Enter the name you want to give the file and click Save.

The default file name is the current name of the component or network prefaced with the
character vector 'rft_'. The app also converts any characters that are not alphanumeric to
underscores (_).

See Also
rftool

More About
• “Export Component Data to File” on page 2-27
• “Export Verilog-A Model” on page 3-4

4 The RF Design and Analysis Tool

4-20

Manage Circuits and Sessions

In this section...
“Working with Circuits” on page 4-21
“Working with the RF Design and Analysis App Sessions” on page 4-22

Working with Circuits
In addition to building and specifying circuits, the RF Design and Analysis app window allows you to
perform the following tasks:

• “Delete a Circuit” on page 4-21
• “Rename a Circuit” on page 4-21

Delete a Circuit

To delete a circuit from your session:

1 Select the circuit in the RF Component List pane.
2 Click Delete.

Note If the circuit you delete is a network, the app deletes the network and everything in the
network.

Rename a Circuit

To rename a component or a network:

1 Select the component or network in the RF Component List pane.
2 Type the new name in the Name field of the Component Parameters pane.
3 Click Apply.

 Manage Circuits and Sessions

4-21

Working with the RF Design and Analysis App Sessions
The work you do with the RF Design and Analysis app is organized into sessions. Each session is a
collection of independent RF circuits, which can be RF components or RF networks.

This section contains the following topics:

• “Name or Rename a Session” on page 4-22
• “Save a Session” on page 4-22
• “Open a Session” on page 4-23
• “Start a New Session” on page 4-23

Name or Rename a Session

To name or rename a session:

1 Select the session, or top-level node, in the RF Component List pane. (The session is selected
by default when you open the app user interface.

2 Type the desired name in the Name field of the Component Parameters pane.
3 Click Apply.

Save a Session

To save your session, select Save Session or Save Session As from the File menu. The first time you
save a session a browser opens, prompting you for a file name.

Note The default file name is the session name with any characters that are not alphanumeric
converted to underscores (_). The name of the session itself is unchanged.

4 The RF Design and Analysis Tool

4-22

For example, to save your session as Test.rf in your current working directory, you would type
Test in the File name field as shown above. The RF Design and Analysis app adds the .rf extension
automatically to all the app sessions you save.

If the name of your session is gk's session, the default file name is gk_s_session.rf.

Open a Session

You can load an existing session into the RF Design and Analysis app by selecting Open Session from
the File menu. A browser enables you to select from your previously saved sessions.

Before opening the requested session, the app prompts you to save your current session.

Start a New Session

To start a new session, select New Session from the File menu. A new session opens in the app. All
its values are set to their defaults.

Before starting a new session, the app prompts you to save your current session.

See Also
rftool

More About
• “Model an RF Network” on page 4-24
• “RF Circuit Objects” on page 1-4
• “Analyze Circuits” on page 4-15

 Manage Circuits and Sessions

4-23

Model an RF Network
In this section...
“Overview” on page 4-24
“Start the RF Design and Analysis App” on page 4-24
“Create the Amplifier Network” on page 4-24
“Populate the Amplifier Network” on page 4-25
“Analyze the Amplifier Network” on page 4-28
“Export the Network to the Workspace” on page 4-29

Overview
In this example, you model the gain and noise figure of a cascaded network and then analyze the
network using the RF Design and Analysis app.

The network used in this example consists of an amplifier and two transmission lines. Here, you learn
how to create and analyze the network using the RF Design and Analysis app.

Start the RF Design and Analysis App
Type the following command at the MATLAB prompt to open the app window:

rftool

For more information about this user interface, see “The RF Design and Analysis Window” on page 4-
2.

Create the Amplifier Network
In this part of the example, you create a network to connect the amplifier components in cascade.

1 In the RF Component List pane, click Add.

The Create Network or Component dialog box opens.
2 In the Create Network or Component dialog box:

4 The RF Design and Analysis Tool

4-24

• Select the Network option button.
• In the Network Name field, enter Amplifier Network.

This name is used to identify the network in the RF Component List pane.
• In the Network Type list, select Cascaded Network.

A Cascaded Network means that when you add components to the network, the app
connects them in cascade.

3 Click OK to add the cascaded network to the session.

The network now appears in the RF Component List pane.

Populate the Amplifier Network
This part of the example shows how to add the following components to the network:

• “Transmission Line 1” on page 4-26

 Model an RF Network

4-25

• “Amplifier” on page 4-26
• “Transmission Line 2” on page 4-27

Transmission Line 1

1 In the Component Parameters pane, click Insert to open the Insert Component or Network
dialog box.

2 In the Insert Component or Network dialog box:

• Select the Component option button.
• In the Component Name field, enter Short Transmission Line.

This name is used to identify the component in the RF Component List pane.
• In the Component Type drop-down list, select Transmission Line.
• In the Value field across from the Line Length (m) parameter, enter 0.001.

3 Click OK to add the transmission line to the network.

Amplifier

1 In the Component Parameters pane, click Insert to open the Insert Component or Network
dialog box.

2 In the Insert Component or Network dialog box:

4 The RF Design and Analysis Tool

4-26

• Select the Component option button.
• In the Component Name field, enter Amplifier.

This name is used to identify the component in the RF Component List pane.
• In the Component Type list, select Data File.
• In the Import from File dialog box that appears, click Cancel . You will specify the name of

the file from which to import data in a later step.
• In the Value field across from the Interpolation parameter, enter cubic.

This value tells the app to use cubic interpolation to determine the behavior of the amplifier at
frequency values that are not specified explicitly in the data file.

• In the Value field across from the File Name parameter, enter default.amp.

3 Click OK to add the amplifier to the network.

Transmission Line 2

1 In the Component Parameters pane, click Insert to open the Insert Component or Network
dialog box.

2 In the Insert Component or Network dialog box, perform the following actions:

• Select the Component option button.
• In the Component Name field, enter Long Transmission Line.

This name is used to identify the component in the RF Component List pane.
• In the Component Type list, select Transmission Line.
• In the Value field across from the Line Length (m) parameter, enter 0.025.
• In the Value field across from the Phase Velocity (m/s) parameter, enter 2.0e8.

 Model an RF Network

4-27

3 Click OK to add the transmission line to the network.

Analyze the Amplifier Network
In this part of the example, you specify the range of frequencies over which to analyze the amplifier
network and then run the analysis.

1 In the Analysis pane, change the Frequency entry to [1.0e9:1e7:2.9e9].

This value specifies an analysis from 1 GHz to 2.9 GHz by 10 MHz.

In the Analysis pane, click Analyze to simulate the network at the specified frequencies.

The RF Design and Analysis app displays a Smith Chart, an XY plot, and a polar plot of the analyzed
circuit.

4 The RF Design and Analysis Tool

4-28

You can modify the plots by

• Selecting and deselecting the S-parameter check boxes at the bottom of each plot to customize
the parameters that the plot displays.

• Using the drop-down list at the top of each plot to customize the plot options.

Export the Network to the Workspace
The RF Design and Analysis app lets you export components and networks to the workspace as circuit
objects so you can use the RF Toolbox functions to perform additional analysis. This part of the
example shows how to export the amplifier network to the workspace.

1 In the app window, select File > Export to Workspace.
2 In the Variable name field, enter CascadedCkt.

This name is the exported object's handle.

 Model an RF Network

4-29

3 Click OK.

The RF Design and Analysis app exports the amplifier network to an rfckt.cascade object,
with the specified object handle, in the MATLAB workspace.

See Also
rftool

More About
• “Analyze Circuits” on page 4-15
• “Manage Circuits and Sessions” on page 4-21
• “Specify Operating Conditions” on page 2-12

4 The RF Design and Analysis Tool

4-30

AMP File Format

5

AMP File Data Sections

In this section...
“Overview” on page 5-2
“Denoting Comments” on page 5-2
“Data Sections” on page 5-3
“S, Y, or Z Network Parameters” on page 5-3
“Noise Parameters” on page 5-4
“Noise Figure Data” on page 5-5
“Power Data” on page 5-6
“IP3 Data” on page 5-8
“Inconsistent Data Sections” on page 5-9

Overview
The AMP data file describes a single nonlinear device. Its format can contain the following types of
data:

• S, Y, or Z network parameters
• Noise parameters
• Noise figure data
• Power data
• IP3 data

An AMP file must contain either power data or network parameter data to be valid. To accommodate
analysis at more than one frequency, the file can contain more than one section of power data. Noise
data, noise figure data, and IP3 data are optional.

Note If the file contains both network parameter data and power data, RF Toolbox software checks
the data for consistency. If the amplifier gain computed from the network parameters is not
consistent with the gain computed from the power data, a warning appears.

Two AMP files, samplepa1.amp and default.amp, ship with the toolbox to show the AMP format.
They describe a nonlinear 2-port amplifier with noise. See “Model a Cascaded RF Network” for an
example that shows how to use an AMP file.

Denoting Comments
An asterisk (*) or an exclamation point (!) precedes a comment that appears on a separate line.

A semicolon (;) precedes a comment that appears following data on the same line.

5 AMP File Format

5-2

matlab:edit default.amp

Data Sections
Each kind of data resides in its own section. Each section consists of a two-line header followed by
lines of numeric data. Numeric values can be in any valid MATLAB format.

A new header indicates the end of the previous section. The data sections can appear in any order in
the file.

Note In the data section descriptions, brackets ([]) indicate optional data or characters. All values
are case insensitive.

S, Y, or Z Network Parameters
Header Line 1

The first line of the header has the format

Keyword [Parameter] [R[REF][=]value]

Keyword indicates the type of network parameter. Its value can be S[PARAMETERS],
Y[PARAMETERS], or Z[PARAMETERS]. Parameter indicates the form of the data. Its value can be
MA, DB, or RI. The default for S-parameters is MA. The default for Y- and Z-parameters is RI. R[REF]
[=]value is the reference impedance. The default reference impedance is 50 ohms.

Note R[REF][=]value must be a positive real scalar or vector. If R[REF][=]value is a vector,
then the vector must be equal to the number of network parameter data points or frequency vector.

The following table explains the meaning of the allowable Parameter values.

Parameter Description
MA Data is given in (magnitude, angle) pairs with angle in degrees

(default for S-parameters).
DB Data is given in (dB-magnitude, angle) pairs with angle in degrees.
RI Data is given in (real, imaginary) pairs (default for Y- and Z-

parameters).

This example of a first line indicates that the section contains S-parameter data given in (real,
imaginary) pairs, and that the reference impedance is 50 ohms.

S RI R 50

Header Line 2

The second line of the header has the format

Independent_variable Units

The data in a section is a function of the Independent_variable. Currently, for S-, Y-, and Z-
parameters, the value of Independent_variable is always F[REQ]. Units indicates the default units of
the frequency data. It can be GHz, MHz, or KHz. You must specify Units, but you can override this
default on any given line of data.

 AMP File Data Sections

5-3

This example of a second line indicates that the default units for frequency data is GHz.

FREQ GHZ

Data

The data that follows the header typically consists of nine columns.

The first column contains the frequency points where network parameters are measured. They can
appear in any order. If the frequency is given in units other than those you specified as the default,
you must follow the value with the appropriate units; there should be no intervening spaces. For
example,

FREQ GHZ
1000MHZ ...
2000MHZ ...
3000MHZ ...

Columns two though nine contain 2-port network parameters in the order N11, N21, N12, N22.
Similar to the Touchstone format, each Nnn corresponds to two consecutive columns of data in the
chosen form: MA, DB, or RI. The data can be in any valid MATLAB format.

This example is derived from the file default.amp. A comment line explains the column
arrangement of the data where re indicates real and im indicates imaginary.
S RI R 50
FREQ GHZ
* FREQ reS11 imS11 reS21 imS21 reS12 imS12 reS22 imS22
 1.00 -0.724725 -0.481324 -0.685727 1.782660 0.000000 0.000000 -0.074122 -0.321568
 1.01 -0.731774 -0.471453 -0.655990 1.798041 0.001399 0.000463 -0.076091 -0.319025
 1.02 -0.738760 -0.461585 -0.626185 1.813092 0.002733 0.000887 -0.077999 -0.316488

Noise Parameters
Header Line 1

The first line of the header has the format

Keyword

Keyword must be NOI[SE].

Header Line 2

The second line of the header has the format

Variable Units

Variable must be F[REQ]. Units indicates the default units of the frequency data. It can be GHz,
MHz, or KHz. You can override this default on any given line of data. This example of a second line
indicates that frequency data is assumed to be in GHz, unless other units are specified.

FREQ GHz

Data

The data that follows the header must consist of five columns.

The first column contains the frequency points at which noise parameters were measured. The
frequency points can appear in any order. If the frequency is given in units other than those you

5 AMP File Format

5-4

specified as the default, you must follow the value with the appropriate units; there should be no
intervening spaces. For example,

NOI
FREQ GHZ
1000MHZ ...
2000MHZ ...
3 ...
4 ...
5 ...

Columns two through five contain, in order,

• Minimum noise figure in decibels
• Magnitude of the source reflection coefficient to realize minimum noise figure
• Phase in degrees of the source reflection coefficient
• Effective noise resistance normalized to the reference impedance of the network parameters

This example is taken from the file default.amp. A comment line explains the column arrangement
of the data.

NOI RN
FREQ GHz
* Freq Fmin(dB) GammmaOpt(MA:Mag) GammmaOpt(MA:Ang) RN/Zo
 1.90 10.200000 1.234000 -78.400000 0.240000
 1.93 12.300000 1.235000 -68.600000 0.340000
 2.06 13.100000 1.254000 -56.700000 0.440000
 2.08 13.500000 1.534000 -52.800000 0.540000
 2.10 13.900000 1.263000 -44.400000 0.640000

Noise Figure Data
The AMP file format supports the use of frequency-dependent noise figure (NF) data.

Header Line 1

The first line of the header has the format

Keyword [Units]

For noise figure data, Keyword must be NF. The optional Units field indicates the default units of the
NF data. Its value must be dB, i.e., data must be given in decibels.

This example of a first line indicates that the section contains NF data, which is assumed to be in
decibels.

NF

Header Line 2

The second line of the header has the format

Variable Units

Variable must be F[REQ]. Units indicates the default units of the frequency data. It can be GHz,
MHz, or KHz. This example of a second line indicates that frequency data is assumed to be in GHz.

 AMP File Data Sections

5-5

FREQ GHz

Data

The data that follows the header typically consists of two columns.

The first column contains the frequency points at which the NF data are measured. Frequency points
can appear in any order. For example,

NF
FREQ MHz
2090 ...
2180 ...
2270 ...

Column two contains the corresponding NF data in decibels.

This example is derived from the file samplepa1.amp.

NF dB
FREQ GHz
1.900 10.3963213
2.000 12.8797965
2.100 14.0611765
2.200 13.2556751
2.300 12.9498642
2.400 13.3244309
2.500 12.7545104

Note If your noise figure data consists of a single scalar value with no associated frequency, that
same value is used for all frequencies. Enter the value in column 1 of the line following header line 2.
You must include the second line of the header, but it is ignored.

Power Data
An AMP file describes power data as input power-dependent output power.

Header Line 1

The first line of the header has the format

Keyword [Units]

For power data, Keyword must be POUT, indicating that this section contains power data. Because
output power is complex, Units indicates the default units of the magnitude of the output power
data. It can be dBW, dBm, mW, or W. The default is W. You can override this default on any given line of
data.

The following table explains the meaning of the allowable Units values.

5 AMP File Format

5-6

Allowable Power Data Units

Units Description
dBW Decibels referenced to one watt
dBm Decibels referenced to one milliwatt
mW Milliwatts
W Watts

This example of a first line indicates that the section contains output power data whose magnitude is
assumed to be in decibels referenced to one milliwatt, unless other units are specified.

POUT dBm

Header Line 2

The second line of the header has the format

Keyword [Units] FREQ[=]value

Keyword must be PIN. Units indicates the default units of the input power data. The default is W.
You can override this default on any given line of data. FREQ[=]value is the frequency point at
which the power is measured. The units of the frequency point must be specified explicitly using the
abbreviations GHz, MHz, kHz, or Hz.

This example of a second line indicates that the section contains input power data that is assumed to
be in decibels referenced to one milliwatt, unless other units are specified. It also indicates that the
power data was measured at a frequency of 2.1E+009 Hz.

PIN dBm FREQ=2.1E+009Hz

Data

The data that follows the header typically consists of three columns:

• The first column contains input power data. The data can appear in any order.
• The second column contains the corresponding output power magnitude.
• The third column contains the output phase shift in degrees.

Note RF Toolbox software does not use the phase data directly. RF Blockset™ blocks use this data
in conjunction with RF Toolbox software to create the AM/PM conversion table for the Equivalent
Baseband library General Amplifier and General Mixer blocks.

If all phases are zero, you can omit the third column. If all phases are zero or omitted, the toolbox
assumes that the small signal phase from the network parameter section of the file
(180*angle(S21(f))/pi) is the phase for all power levels.

In contrast, if one or more phases in the power data section are nonzero, the toolbox interpolates and
extrapolates the data to determine the phase at all power levels. The small signal phase
(180*angle(S21(f))/pi) from the network parameter section is ignored.

Inconsistency between the power data and network parameter sections of the file may cause
incorrect results. To avoid this outcome, verify that the following criteria must is met:

 AMP File Data Sections

5-7

• The lowest input power value for which power data exists falls in the small signal (linear) region.
• In the power table for each frequency point f, the power gain and phase at the lowest input power

value are equal to 20*log10(abs(S21(f))) and 180*angle(S21(f))/pi, respectively, in the
network parameter section.

If the power is given in units other than those you specified as the default, you must follow the value
with the appropriate units. There should be no intervening spaces.

This example is derived from the file default.amp. A comment line explains the column
arrangement of the data.

POUT dbm
PIN dBm FREQ = 2.10GHz
* Pin Pout Phase(degrees)
 0.0 19.28 0.0
 1.0 20.27 0.0
 2.0 21.26 0.0

Note The file can contain more than one section of power data, with each section corresponding to a
different frequency value. When you analyze data from a file with multiple power data sections,
power data is taken from the frequency point that is closest to the analysis frequency.

IP3 Data
An AMP file can include frequency-dependent, third-order input (IIP3) or output (OIP3) intercept
points.

Header Line 1

The first line of the header has the format

Keyword [Units]

For IP3 data, Keyword can be either IIP3 or OIP3, indicating that this section contains input IP3
data or output IP3 data. Units indicates the default units of the IP3 data. Valid values are dBW, dBm,
mW, and W. The default is W.

This example of a first line indicates that the section contains input IP3 data which is assumed to be
in decibels referenced to one milliwatt.

IIP3 dBm

Header Line 2

The second line of the header has the format

Variable Units

Variable must be FREQ. Units indicates the default units of the frequency data. Valid values are
GHz, MHz, and KHz. This example of a second line indicates that frequency data is assumed to be in
GHz.

FREQ GHz

5 AMP File Format

5-8

Data

The data that follows the header typically consists of two columns.

The first column contains the frequency points at which the IP3 parameters are measured. Frequency
points can appear in any order.

OIP3
FREQ GHz
2.010 ...
2.020 ...
2.030 ...

Column two contains the corresponding IP3 data.

This example is derived from the file samplepa1.amp.

OIP3 dBm
FREQ GHz
2.100 38.8730377

Note If your IP3 data consists of a single scalar value with no associated frequency, then that same
value is used for all frequencies. Enter the value in column 1 of the line following header line 2. You
must include the second line of the header, but the application ignores it.

Inconsistent Data Sections
If an AMP file contains both network parameter data and power data, RF Toolbox software checks the
data for consistency.

The toolbox compares the small-signal amplifier gain defined by the network parameters, S21, and by
the power data, Pout – Pin. The discrepancy between the two is computed in dBm using the following
equation:

ΔP = S21(fP)− Pout(fP) + Pin(fP)

wherefP is the lowest frequency for which power data is specified.

The discrepancy is shown in the following graph.

 AMP File Data Sections

5-9

If ΔP is more than 0.4 dB, a warning appears. Large discrepancies may indicate measurement errors
that require resolution.

See Also

More About
• “S-Parameter Notation”
• “Determining Parameter Formats” on page 6-2

5 AMP File Format

5-10

How Tos, Definitions, Algorithms

6

Determining Parameter Formats

In this section...
“Primary and Secondary Formats” on page 6-2
“Determining Formats for One Parameter” on page 6-3
“Determining Formats for Multiple Parameters” on page 6-3

When you call plotyy without specifying the formats for the specified parameter, plotyy
determines the formats from the primary and secondary formats.

Primary and Secondary Formats
The following table shows the primary and secondary formats for the parameters for all circuit and
data objects. Use the listparam method to list the valid parameters for a particular object. Use the
listformat method to list valid formats.

Parameter Primary Format Secondary Format
S11, S12, S21, S22 Magnitude(decibels) Angle(Degrees)
LS11, LS12, LS21, LS22 Magnitude(decibels) Angle(Degrees)
NF Magnitude(decibels) none
OIP3 dBm W
Pout dBm W
Phase Angle(Degrees) none
AM/AM Magnitude(decibels) none
AM/PM Angle(Degrees) none
GammaIn, GammaOut Magnitude(decibels) Angle(Degrees)
Gt, Ga, Gp, Gmag, Gmsg Magnitude(decibels) none
Delta Magnitude(decibels) Angle(Degrees)
TF1, TF2 Magnitude(decibels) Angle(Degrees)
GammaMS, GammaML Magnitude(decibels) Angle(Degrees)
VSWRIn, VSWROut Magnitude(decibels) none
GroupDelay ns none
Fmin Magnitude(decibels) none
GammaOPT Magnitude(decibels) Angle(Degrees)
K, Mu, MuPrime none none
RN none none
PhaseNoise dBc/Hz none
NTemp K none
NFactor none none

6 How Tos, Definitions, Algorithms

6-2

Determining Formats for One Parameter
When you specify only one parameter for plotting, plotyy creates the plot as follows:

• The predefined primary format is the format for the left Y-axis.
• The predefined secondary format is the format for the right Y-axis.

If the specified parameter does not have the predefined secondary format, plotyy behaves the same
way as plot, and does not add a second y-axis to the plot.

Determining Formats for Multiple Parameters
To plot multiple parameters on two Y-axes, plotyy tries to find two formats from the predefined
primary and secondary formats for the specified parameters. To be used in the plot, the formats must
meet the following criteria:

• Each format must be a valid format for at least one parameter.
• Each parameter must be plotted at least on one Y-axis.

If cannot meet these criteria,plotyy it issues an error message.

The function uses the following algorithm to determine the two parameters:

1 Look up the primary and secondary formats for the specified parameters.
2 If one or more pairs of primary-secondary formats meets the preceding criteria for all

parameters:

• Select the pair that applies to the most parameters.
• Use these formats to create the plot.

Otherwise, proceed to the next step.
3 If no pairs of primary-secondary formats meet the criteria for all parameters, try to find one or

more pairs of primary-primary format that meets the criteria. If one or more pairs of primary-
primary formats meets the preceding criteria for all parameters:

• Select the pair that applies to the most parameters.
• Use these formats to create the plot.

Otherwise, proceed to the next step.
4 If the preceding steps fail to produce a plot, try to find one format from the predefined primary

formats. If a primary format is valid for all parameters, use this format to create the plot with the
MATLAB plot function.

5 If all the preceding steps are not successful, issue an error message.

See Also

More About
• “S-Parameter Notation”
• “AMP File Data Sections” on page 5-2

 Determining Parameter Formats

6-3

RF Toolbox Examples

7

Superheterodyne Receiver Using RF Budget Analyzer App
This example shows how to build a superheterodyne receiver and analyze the receiver's RF budget
for gain, noise figure, and IP3 using the RF Budget Analyzer app. The receiver is a part of a
transmitter-receiver system described in the IEEE conference papers, [1] and [2].

Introduction

RF system designers begin the design process with a budget specification for how much gain, noise
figure (NF), and nonlinearity (IP3) the entire system must satisfy. To assure the feasibility of an
architecture modeled as a simple cascade of RF elements, designers calculate both the per-stage and
cascade values of gain, noise figure and IP3 (third-intercept point).

Using the RF Budget Analyzer app, you can:

• Build a cascade of RF elements.
• Calculate the per-stage and cascade output power, gain, noise figure, SNR, and IP3 of the system.
• Export the per-stage and cascade values to the MATLAB™ workspace.
• Export the system design to RF Blockset for simulation.
• Export the system design to RF Blockset measurement testbench as a DUT (device under test)

subsystem and verify the results obtained using the App.

System Architecture

The receiver system architecture designed using the app is:

The receiver bandwidth is between 5.825 GHz and 5.845 GHz.

Build Superheterodyne Receiver

You can build all the components of the superheterodyne receiver using MATLAB command line and
view the analysis using the RF Budget Analyzer app.

The first components in the superheterodyne receiver system architecture are the antenna and TR
switch. We replace the antenna block with the effective power reaching the switch.

7 RF Toolbox Examples

7-2

1. The system uses the TR switch to switch between the transmitter and the receiver. The switch adds
a loss of 1.3 dB to the system. Create a TRSwitch with a gain of -1.3 dB, and OIP3 of 37 dBm. To
match the RF budget results from reference [1], the noise figure is assumed to be 2.3 dB.

elements(1) = rfelement('Name','TRSwitch','Gain',-1.3,'NF',2.3,'OIP3',37);

2. To model the RF bandpass filter use rffilter to design the filter. From the example “Design IF
Butterworth Bandpass Filter” on page 7-179, load impedance of the filter is found to be 132.986
Ohms. But for budget calculation, each stage is terminated by 50 Ohms internally. Therefore, to
achieve an insertion loss of 1 dB, the input impedance, Zin of the next element, i.e., amplifier, is set to
132.896 Ohms.

Fcenter = 5.8e9;
Bwpass = 20e6;
Z = 132.986;
elements(2) = rffilter('ResponseType','Bandpass', ...
 'FilterType','Butterworth','FilterOrder',6, ...
 'PassbandAttenuation',10*log10(2), ...
 'Implementation','Transfer function', ...
 'PassbandFrequency',[Fcenter-Bwpass/2 Fcenter+Bwpass/2],'Zout',50, ...
 'Name','RF_Filter');

The S-parameters for this filter are not ideal and automatically inserts a loss of approximately -1dB
into the system.

3. Use the amplifier object to model a Low Noise Amplifier block with a gain of 15 dB, noise
figure of 1.5 dB, and OIP3 of 26 dBm.

elements(3) = amplifier('Name','LNA','Gain',15,'NF',1.5,'OIP3',26, ...
 'Zin',Z);

4. Model a Gain block with a gain of 10.5 dB, noise figure of 3.5 dB, and OIP3 of 23 dBm.

elements(4) = amplifier('Name','Gain','Gain',10.5,'NF',3.5,'OIP3',23);

5. The receiver downconverts the RF frequency to an IF frequency of 400 MHz. Use the modulator
object to create Demodulator block with a LO (Local Oscillator) frequency of 5.4 GHz, gain of -7 dB,
noise figure of 7 dB, and OIP3 of 15 dBm.

elements(5) = modulator('Name','Demod','Gain',-7,'NF',7,'OIP3',15, ...
 'LO',5.4e9, 'ConverterType','Down');

6. To model the RF bandpass filter use rffilter to design the filter.

Fcenter = 400e6;
Bwpass = 5e6;
elements(6) = rffilter('ResponseType','Bandpass', ...
 'FilterType','Butterworth','FilterOrder',4, ...
 'PassbandAttenuation',10*log10(2), ...
 'Implementation','Transfer function', ...
 'PassbandFrequency',[Fcenter-Bwpass/2 Fcenter+Bwpass/2],'Zout',50, ...
 'Name','IF_Filter');

The S-parameters for this filter are not ideal and automatically inserts a loss of approximately -1dB
into the system.

7. Model an IF Amplifier block with a gain of 40 dB and a noise figure of 2.5 dB.

 Superheterodyne Receiver Using RF Budget Analyzer App

7-3

elements(7) = amplifier('Name','IFAmp','Gain',40,'NF',2.5,'Zin',Z);

8. As seen in the references, the receiver uses an AGC (Automatic Gain Control) block where the gain
varies with the available input power level. For an input power of -80 dB, the AGC gain is at a
maximum of 17.5 dB. Use an Amplifier block to model an AGC. Model an AGC block with a gain of
17.5 dB, noise figure of 4.3 dB, and OIP3 of 36 dBm.

elements(8) = amplifier('Name','AGC','Gain',17.5,'NF',4.3,'OIP3',36);

9. Calculate the rbudget of the superheterodyne receiver using the following System Parameters:
5.8 GHz for Input frequency, -80 dB for Available input power, and 20 MHz for Signal
bandwidth. Replace the antenna element with the effective Available input power which is
estimated to be -66 dB reaching the TRswitch

superhet = rfbudget('Elements',elements,'InputFrequency',5.8e9, ...
 'AvailableInputPower',-66,'SignalBandwidth',20e6)

superhet =
 rfbudget with properties:

 Elements: [1x8 rf.internal.rfbudget.Element]
 InputFrequency: 5.8 GHz
 AvailableInputPower: -66 dBm
 SignalBandwidth: 20 MHz
 Solver: Friis
 AutoUpdate: true

 Analysis Results
 OutputFrequency: (GHz) [5.8 5.8 5.8 5.8 0.4 0.4 0.4 0.4]
 OutputPower: (dBm) [-67.3 -67.3 -53.3 -42.8 -49.8 -49.8 -10.8 6.7]
 TransducerGain: (dB) [-1.3 -1.3 12.7 23.2 16.2 16.2 55.2 72.7]
 NF: (dB) [2.3 2.3 3.531 3.657 3.693 3.693 3.728 3.728]
 IIP2: (dBm) []
 OIP2: (dBm) []
 IIP3: (dBm) [38.3 38.3 13.29 -0.3904 -3.824 -3.824 -3.824 -36.7]
 OIP3: (dBm) [37 37 25.99 22.81 12.38 12.38 51.38 36]
 SNR: (dB) [32.66 32.66 31.43 31.31 31.27 31.27 31.24 31.24]

View the analysis in the RF Budget Analyser app.

show(superhet);

7 RF Toolbox Examples

7-4

10. The app displays the cascade values such as: output frequency of the receiver, output power, gain,
noise figure, OIP3, and SNR (Signal-to- Noise-Ratio).

 Superheterodyne Receiver Using RF Budget Analyzer App

7-5

11. The RF Budget Analyzer app saves the model in a MAT-file format.

Plot Cascade Transducer Gain and Cascade Noise Figure

1. Plot the cascade transducer gain of the receiver using the function, rfplot

rfplot(superhet,'GainT')
view(90,0)

2. Plot the cascade noise figure of the receiver.

rfplot(superhet,'NF')
view(90,0)

7 RF Toolbox Examples

7-6

You can also use the Plot button on the RFBudgetAnalyzer app to plot the different output values.

Export to MATLAB Script

1. You can also export the model to MATLAB script format using the Export button or:

h = exportScript(superhet);

The script opens automatically in a MATLAB Editor window.

h.closeNoPrompt

Verify Output Power and Transducer Gain Using RF Blockset Simulation

1. Use the Export button to export the receiver to RF Blockset or:

exportRFBlockset(superhet)

2. Run the RF Blockset model to calculate the Output power (dBm) and Transducer gain (dB) of
the receiver. Note that the results match the Pout (dBm) and the GainT (dB) values of the receiver
obtained using the RF Budget Analyzer app.

 Superheterodyne Receiver Using RF Budget Analyzer App

7-7

3. Look under the mask of the Demodulator block. This block consists of an ideal filter and a channel
select filter and an LO (local oscillator) for frequency up or down conversion.

4. The stop time for the simulation is zero. To simulate time-varying results, you need to change the
stop time.

Export to RF Blockset Testbench

1. Use the Export button to export the receiver to RF Blockset measurement testbench or:

exportTestbench(superhet);

2. The RF Blockset testbench consists of two subsystems, RF Measurement Unit and Device
Under Test.

7 RF Toolbox Examples

7-8

3. The Device Under Test subsystem block contains the superheterodyne receiver you exported
from the RF Budget Analyzer app. Double-click on the DUT subsystem block to look inside.

 Superheterodyne Receiver Using RF Budget Analyzer App

7-9

4. Double-click on the RF Measurement Unit subsystem block to see the system parameters. By
default, RF Blockset testbench verifies gain.

7 RF Toolbox Examples

7-10

Verify Gain, Noise Figure and IP3 Using RF Blockset Testbench

You can verify the gain, noise figure, and IP3 measurements using the RF Blockset testbench.

1. By default, the model verifies the gain measurement of the device under test. Run the model to
check the gain value. The simulated gain value matches the cascade transducer gain value from the
app. The scope shows an output power of approximately 6.7 dB at 400 MHz that matches the output
power value in the RF Budget Analyzer app.

 Superheterodyne Receiver Using RF Budget Analyzer App

7-11

2. The RF Blockset testbench calculates the spot noise figure. The calculation assumes a frequency
independent system within a given bandwidth. To simulate a frequency independent system and
calculate the correct noise figure value, you need to reduce the broad bandwidth of 20 MHz to a
narrow bandwidth.

3. First, stop all simulations. Double-click on the RF Measurement Unit Block. This opens the RF
measurement unit parameters. In the Measured Quantity parameter drop down, change the
parameter to NF (noise figure). In the Parameters tab, change the Baseband bandwidth (Hz) to
2000 Hz. Click Apply. To learn more about how to manipulate noise figure verification, click the
Instructions tab.

7 RF Toolbox Examples

7-12

4. Run the model again to check the noise figure value. The testbench noise figure value matches the
cascade noise figure value from the RF Budget Analyzer app.

5. IP3 measurements rely on the creation and measurement of intermodulation tones that are usually
small in amplitude and may be below the DUT's noise floor. For accurate IP3 measurements, clear the
Simulate noise checkbox.

6. To verify OIP3 (output third-order intercept), stop all simulations. Open the RF Measurement
Unit dialog box. Clear the Simulate noise (both stimulus and DUT internal) check box. Change
the Measured Quantity parameter to IP3. Keep the IP Type as Output referred. To learn more
about how to manipulate OIP3 verification, click the Instructions tab. Click Apply.

 Superheterodyne Receiver Using RF Budget Analyzer App

7-13

7. Run the model. The testbench OIP3 value matches the cascade OIP3 value of the app.

8. To verify IIP3 (input third-order intercept), stop all simulations. Open RF Measurement Unit
dialog box. Clear the Simulate noise (both stimulus and DUT internal) check box. Change the
Measured Quantity parameter in block parameters to IP3. Change the IP Type to Input referred.
To learn more about how to manipulate IIP3 verification, click the Instructions tab. Click Apply.

9. Run the model again to check the IIP3 value.

7 RF Toolbox Examples

7-14

References

[1] Hongbao Zhou, Bin Luo. " Design and budget analysis of RF receiver of 5.8GHz ETC reader"
Published at Communication Technology (ICCT), 2010 12th IEEE International Conference, Nanjing,
China, November 2010.

[2] Bin Luo, Peng Li. "Budget Analysis of RF Transceiver Used in 5.8GHz RFID Reader Based on the
ETC-DSRC National Specifications of China" Published at Wireless Communications, Networking and
Mobile Computing, WiCom '09. 5th International Conference, Beijing, China, September 2009.

See Also
RF Budget Analyzer

More About
• “Visualizing RF Budget Analysis Over Bandwidth” on page 7-16
• “Bandpass Filter Response” on page 7-24

 Superheterodyne Receiver Using RF Budget Analyzer App

7-15

Visualizing RF Budget Analysis Over Bandwidth
This example shows how to programmatically perform an RF budget analysis of an RF receiver
system and visualize the computed budget results across the bandwidth of the input signal.

First, use amplifier, modulator, rfelement, and nport objects to specify the 2-port RF elements
in a design. Then compute RF budget results by cascading the elements together into an RF system
with rfbudget.

The rfbudget object enables design exploration and visualization at the MATLAB® command-line or
graphically in the RF Budget Analyzer app. It also enables automatic RF Blockset™ model and
measurement testbench generation.

Introduction

RF system designers typically begin a design process with budget specifications for the gain, noise
figure (NF), and nonlinearity (IP3) of the entire system.

MATLAB functionality supporting RF budget analysis makes it easy to visualize gain, NF and IP3
results at multiple frequencies throughout the bandwidth of the signal. You can:

• Programmatically build an rfbudget object out of 2-port RF elements.
• Use the Command Line display of the rfbudget object to view single-frequency budget results.
• Vectorize the input frequency of the rfbudget object and use MATLAB plot to visualize RF

budget results across the bandwidth of the input signal.

In addition, with an rfbudget object you can:

• Use export methods to generate MATLAB scripts, RF Blockset models, or measurement
testbenches in Simulink®.

• Use show command to copy an rfbudget object into the RF Budget Analyzer app.

Building Elements of RF Receiver

A basic RF receiver consists of an RF filter, an RF amplifier, a demodulator, an IF filter, and an IF
amplifier.

First build and parameterize each of the 2-port RF elements. Then use rfbudget to cascade the
elements with input frequency 2.1 GHz, input power -30 dBm, and input bandwidth 45 MHz.

f1 = nport('RFBudget_RF.s2p','RFBandpassFilter');

a1 = amplifier('Name','RFAmplifier', ...
 'Gain',11.53, ...
 'NF',1.53, ...
 'OIP3',35);

d = modulator('Name','Demodulator', ...
 'Gain',-6, ...
 'NF',4, ...
 'OIP3',50, ...
 'LO',2.03e9, ...
 'ConverterType','Down');

f2 = nport('RFBudget_IF.s2p','IFBandpassFilter');

7 RF Toolbox Examples

7-16

a2 = amplifier('Name','IFAmplifier', ...
 'Gain',30, ...
 'NF',8, ...
 'OIP3',37);

b = rfbudget('Elements',[f1 a1 d f2 a2], ...
 'InputFrequency',2.1e9, ...
 'AvailableInputPower',-30, ...
 'SignalBandwidth',45e6);

Visualize RF Budget Results in MATLAB

Scalar frequency results can be viewed simply by using MATLAB disp to see the results at the
Command Line. Each column of the budget shows the results of cascading only the elements of the
previous columns. Note that final column shows the RF budget results of the entire cascade.

disp(b)

 rfbudget with properties:

 Elements: [1x5 rf.internal.rfbudget.Element]
 InputFrequency: 2.1 GHz
 AvailableInputPower: -30 dBm
 SignalBandwidth: 45 MHz
 Solver: Friis
 AutoUpdate: true

 Analysis Results
 OutputFrequency: (GHz) [2.1 2.1 0.07 0.07 0.07]
 OutputPower: (dBm) [-31.53 -20 -26 -27.15 2.847]
 TransducerGain: (dB) [-1.534 9.996 3.996 2.847 32.85]
 NF: (dB) [1.533 3.064 3.377 3.611 7.036]
 IIP2: (dBm) []
 OIP2: (dBm) []
 IIP3: (dBm) [Inf 25 24.97 24.97 4.116]
 OIP3: (dBm) [Inf 35 28.97 27.82 36.96]
 SNR: (dB) [65.91 64.38 64.07 63.83 60.41]

Plot RF Budget Results Versus Input Frequency

Use the budget's rfplot function to produce report-ready plots of cumulative RF budget results
versus a range of cascade input frequencies. Cumulative (i.e. terminated sub-cascade) results are
automatically computed to show the variation of the RF budget result through the entire design. Use
the data cursor of the figure window to interactively explore values at different frequencies at
different stages.

rfplot(b,'Pout')

 Visualizing RF Budget Analysis Over Bandwidth

7-17

rfplot(b,'GainT')

7 RF Toolbox Examples

7-18

Plot RF Budget Network Parameter Results Versus Input Frequency

Use the RF budget smithplot/polar function to produce plots of cumulative RF budget sparameter
results versus a range of cascade input frequencies. Use smithplot function to view reflection
coefficients and polar to view reflection and transmission coefficients.

smithplot(b,1,1)

 Visualizing RF Budget Analysis Over Bandwidth

7-19

polar(b,2,1)

7 RF Toolbox Examples

7-20

Easily Export to RF Blockset and Simulink

The rfbudget object has other useful MATLAB methods:

• exportScript - generate a MATLAB script that builds the current design
• exportRFBlockset - generate an RF Blockset model for simulation
• exportTestbench - generate a Simulink measurement testbench

Visualize RF Budget Results in App

Use the show command to copy a single-frequency rfbudget object into the RF Budget Analyzer
app. The Plot, Smith, and Polar button in the app, with its pull-down options, calls rfplot,
smithplot, and polar respectively.

In the app, the Export button copies the current design to an rfbudget object in the MATLAB
workspace. All of the other export methods of the RF budget object are available through the
pulldown options of the Export button.

show(b)

 Visualizing RF Budget Analysis Over Bandwidth

7-21

7 RF Toolbox Examples

7-22

Automatically Create Reports From MATLAB Files

If you have written a 'myfile.m' script that builds your design and visualizes it with rfplot
commands, try the publish('myfile.m') function at the command line (or click the Publish
button in the MATLAB editor). This automatically generates all figures and produces a report for your
colleagues, saved as an html file.

To save your design, first undock using the commands shown below and then use the Figure Toolbar
to pulldown the File Menu and save using File -> Save As and select the Save as type to png or pdf.
To redock the figure window into the app you can click the Dock affordance on the upper right corner
of the figure window.

h = findall(0,'type','figure','name','untitled');
set(h,'WindowStyle','normal')
set(h,'MenuBar','figure')
set(h,'ToolBar','auto')

See Also

More About
• “Superheterodyne Receiver Using RF Budget Analyzer App” on page 7-2
• “Bandpass Filter Response” on page 7-24

 Visualizing RF Budget Analysis Over Bandwidth

7-23

Bandpass Filter Response
This example shows how to compute the time-domain response of a simple bandpass filter. The eight
steps involved in computing the time-domain response of a simple bandpass filter are,

1 Use the classic image parameter design to assign inductance and capacitance values to the
bandpass filter.

2 Use the circuit, capacitor, and inductor objects with the add function to programmatically
construct a Butterworth circuit.

3 Use the setports function to define the circuit as a 2-port network.
4 Use the sparameters function to extract the S-parameters of the 2-port network over a wide

frequency range.
5 Use the s2tf function to compute the voltage transfer function from the input to the output.
6 Use the rational object to generate rational fits that capture the ideal RC circuit to a very high

degree of accuracy.
7 Use the randn function to create noise in order to create a noisy input voltage waveform.
8 Use the timeresp function to compute the transient response to a noisy input voltage

waveform.

Design Bandpass Filter Using Image Parameters

The image parameter design is a framework for analytically computing the values of the series and
parallel components in the passive filters. For more information on Image Parameters, see "Complete
Wireless Design" by Cotter W. Sayre, McGraw-Hill 2008 p. 331.

Figure 1: A Butterworth bandpass filter built out of two half-sections.

Generate the component values for a bandpass filter with a lower 3 dB cutoff frequency of 2.4 GHz
and an upper 3 dB cutoff frequency of 2.5 GHz.

Ro = 50;
f1C = 2400e6;
f2C = 2500e6;
Ls = (Ro / (pi*(f2C - f1C)))/2; % Ls1 and Ls2
Cs = 2*(f2C - f1C)/(4*pi*Ro*f2C*f1C); % Cs1 and Cs2
Lp = 2*Ro*(f2C - f1C)/(4*pi*f2C*f1C); % Lp1 and Lp2
Cp = (1/(pi*Ro*(f2C - f1C)))/2; % Cp1 and Cp2

7 RF Toolbox Examples

7-24

Programmatically Construct Circuit

Before building the circuit using the inductor and capacitor objects, nodes in the circuit are
numbered. This is shown in figure 1.

Figure 2: Node numbers added to the Butterworth bandpass filter.

Create a circuit object and populate it with the inductor and the capacitor objects using the
add function.

ckt = circuit('butterworthBPF');

add(ckt,[3 2],inductor(Ls)); % Ls1
add(ckt,[4 3],capacitor(Cs)); % Cs1
add(ckt,[5 4],capacitor(Cs)); % Cs2
add(ckt,[6 5],inductor(Ls)); % Ls2

add(ckt,[4 1],capacitor(Cp)); % Cp1
add(ckt,[4 1],inductor(Lp)); % Lp1
add(ckt,[4 1],inductor(Lp)); % Lp2
add(ckt,[4 1],capacitor(Cp)); % Cp2

Extract S-Parameters From 2-Port Network

To extract S-parameters from the circuit object, first use the setports function to define the circuit
as a 2-port network.

freq = linspace(2e9,3e9,101);

Use the sparameters function to extract the S-parameters at the frequencies of interest.

setports(ckt,[2 1],[6 1])
S = sparameters(ckt,freq);

Fit Transfer Function of Circuit to Rational Function

Use the s2tf function to generate a transfer function from the S-parameter object.

tfS = s2tf(S);

Use the rational object to fit the transfer function data to a rational function.

fit = rational(freq,tfS);

 Bandpass Filter Response

7-25

Verify Rational Fit Approximation

Use the freqresp function to verify that the rational fit approximation has reasonable behavior
outside both sides of the fitted frequency range.

widerFreqs = linspace(2e8,5e9,1001);
resp = freqresp(fit,widerFreqs);

Plot to visualize rational fit approximation. The rational fit behaves well outside the fitted frequency
range.

figure
semilogy(freq,abs(tfS),widerFreqs,abs(resp),'--','LineWidth',2)
xlabel('Frequency (Hz)');
ylabel('Magnitude');
legend('data','fit');
title('Rational Fit Approximation');

Construct Input Signal to Test Bandpass Filter

To test the bandpass filter, designed by the Image Parameter technique, a sinusoidal signal at 2.45
GHz is recovered from the noisy input signal. The noise input signal is generated by the inclusion of
zero-mean random noise and a blocker at 2.35 GHz to the input signal.

Construct a input and a noisy input signal with 8192 samples.

fCenter = 2.45e9;
fBlocker = 2.35e9;

7 RF Toolbox Examples

7-26

period = 1/fCenter;
sampleTime = period/16;
signalLen = 8192;
t = (0:signalLen-1)'*sampleTime; % 256 periods
input = sin(2*pi*fCenter*t); % Clean input signal
rng('default')
noise = randn(size(t)) + sin(2*pi*fBlocker*t);
noisyInput = input + noise; % Noisy input signal

Compute Transient Response to Input Signal

Use the timeresp function to compute the analytic solutions of the state-space.

output = timeresp(fit,noisyInput,sampleTime);

View Input Signal and Filter Response in Time Domain

Plot the input signal, noisy input signal, and the band pass filter output in a figure window.

xmax = t(end)/8;
figure
subplot(3,1,1)
plot(t,input)
axis([0 xmax -1.5 1.5])
title('Input')

subplot(3,1,2)
plot(t,noisyInput)
axis([0 xmax floor(min(noisyInput)) ceil(max(noisyInput))]);
title('Noisy Input');
ylabel('Amplitude (volts)');

subplot(3,1,3)
plot(t,output)
axis([0 xmax -1.5 1.5]);
title('Filter Output');
xlabel('Time (sec)');

 Bandpass Filter Response

7-27

View Input Signal and Filter Response in Frequency Domain

Overlaying the noisy input and the filter response in the frequency domain explains why the filtering
operation is successful. Both the blocker signal at 2.35 GHz and much of the noise are significantly
attenuated.

NFFT = 2^nextpow2(signalLen); % Next power of 2 from length of y
Y = fft(noisyInput,NFFT)/signalLen;
samplingFreq = 1/sampleTime;
f = samplingFreq/2*linspace(0,1,NFFT/2+1)';
O = fft(output,NFFT)/signalLen;

figure
subplot(2,1,1)
plot(freq,abs(tfS),'b','LineWidth',2)
axis([freq(1) freq(end) 0 1.1]);
legend('filter transfer function');
title('Transfer function of Bandpass filter');
ylabel('Magnitude');

subplot(2,1,2)
plot(f,2*abs(Y(1:NFFT/2+1)),'g',f,2*abs(O(1:NFFT/2+1)),'r','LineWidth',2)
axis([freq(1) freq(end) 0 1.1]);
legend('input+noise','output');
title('Filter characteristic and noisy input spectrum.');
xlabel('Frequency (Hz)');
ylabel('Magnitude (Volts)');

7 RF Toolbox Examples

7-28

To compute and display this bandpass filter response using RFCKT objects, see “Bandpass Filter
Response using RFCKT Objects” on page 7-36.

See Also

More About
• “Design IF Butterworth Bandpass Filter” on page 7-179
• “Superheterodyne Receiver Using RF Budget Analyzer App” on page 7-2
• “Visualizing RF Budget Analysis Over Bandwidth” on page 7-16

 Bandpass Filter Response

7-29

MOS Interconnect and Crosstalk
This example shows how to build and simulate an RC tree circuit using the RF Toolbox™.

In "Asymptotic Waveform Evaluation for Timing Analysis" (IEEE Transactions on Computer-Aided
Design, Vol., 9, No. 4, April 1990), Pillage and Rohrer presented and simulated an RC tree circuit that
models signal integrity and crosstalk in low- to mid-frequency MOS circuit interconnect. This example
confirms their simulations using RF Toolbox software.

Their circuit, reproduced in the following figure, consists of 11 resistors and 12 capacitors. In the
paper, Pillage and Rohrer:

• Apply a ramp voltage input
• Compute transient responses
• Plot the output voltages across two different capacitors, C7 and C12.

Figure 1: An RC tree model of MOS interconnect with crosstalk.

With RF Toolbox, you can programmatically construct this circuit in MATLAB and perform signal
integrity simulations.

This example shows:

1 How to use circuit, resistor, and capacitor with the add function to programmatically
construct the circuit.

2 How to use clone, setports, and sparameters objects to calculate S-parameters for each
desired output over a wide frequency range.

3 How to use s2tf with Zsource = 0 and Zload = Inf to compute the voltage transfer function
from input to each desired output.

7 RF Toolbox Examples

7-30

4 How to use rationalfit function to produce rational-function approximations that capture the
ideal RC-circuit behavior to a very high degree of accuracy.

5 How to use timeresp function to compute the transient response to the input voltage waveform.

Insert Node Numbers Into Circuit Diagram

Before building the circuit using resistor and capacitor objects, we must number the nodes of
the circuit shown in figure 1.

Figure 2: The circuit drawn with node numbers

Programmatically Construct Circuit

Create a circuit and use the add function to populate the circuit with named resistor and
capacitor objects.

ckt = circuit('crosstalk');

add(ckt,[2 1],resistor(10,'R1'))
add(ckt,[2 0],capacitor(0.114e-12,'C1'))
add(ckt,[3 2],resistor(72,'R2'))
add(ckt,[3 0],capacitor(1.238e-12,'C2'))
add(ckt,[4 3],resistor(34,'R3'))
add(ckt,[4 0],capacitor(0.021e-12,'C3'))
add(ckt,[5 4],resistor(96,'R4'))
add(ckt,[5 0],capacitor(0.028e-12,'C4'))
add(ckt,[6 5],resistor(72,'R5'))
add(ckt,[6 0],capacitor(0.007e-12,'C5'))
add(ckt,[7 6],resistor(10,'R6'))
add(ckt,[7 0],capacitor(1.048e-12,'C6'))
add(ckt,[8 7],resistor(120,'R7'))
add(ckt,[8 0],capacitor(0.47e-12,'C7'))

 MOS Interconnect and Crosstalk

7-31

add(ckt,[12 8],resistor(24,'R8'))
add(ckt,[12 0],capacitor(0.2e-12,'C8'))

add(ckt,[10 2],resistor(48,'R9'))
add(ckt,[10 0],capacitor(0.007e-12,'C9'))
add(ckt,[11 10],resistor(24,'R10'))
add(ckt,[11 0],capacitor(0.2e-12,'C10'))

add(ckt,[9 8],capacitor(0.1e-12,'C11'))
add(ckt,[9 0],resistor(1000,'R11'))
add(ckt,[9 0],capacitor(1e-12,'C12'))

Simulation Setup

The input signal used by Pillage and Rohrer is a voltage ramp from 0 to 5 volts with a rise time of one
nanosecond and a duration of ten nanoseconds. The following MATLAB code models this signal with
1000 timepoints with a sampleTime of 0.01 nanoseconds.

The following MATLAB code also uses the logspace function to generate a vector of 101
logarithmically spaced analysis frequencies between 1 Hz and 100 GHz. Specifying a wide set of
frequency points improves simulation accuracy.

sampleTime = 1e-11;
t = (0:1000)'*sampleTime;
input = [(0:100)'*(5/100); (101:1000)'*0+5];
freq = logspace(0,11,101)';

Calculate S-Parameters For Each 2-Port Network

To calculate the response across both the C7 and C12 capacitors, two separate S-parameter
calculations must be made: first, assuming the C7 capacitor represents the output port, and second,
assuming the C12 capacitor represents the output port. To calculate the S-parameters for each setup:

1 Copy the original circuit ckt using the clone function.
2 Define the input and output ports of the network using the setports function.
3 Calculate the S-parameters using the sparameters object.

Calculate S-parameters with C7 capacitor represents the output port.

cktC7 = clone(ckt);
setports(cktC7,[1 0],[8 0])
S_C7 = sparameters(cktC7,freq);

Calculate S-parameters with C12 capacitor represents the output port.

cktC12 = clone(ckt);
setports(cktC12,[1 0],[9 0])
S_C12 = sparameters(cktC12,freq);

Simulate Each 2-Port Network

To simulate each network:

1 The s2tf function, with option = 2, computes the gain from the source voltage to the output
voltage. It allows arbitrary source and load impedances, in this case Zsource = 0 and Zload =
Inf. The resulting transfer functions tfC7 and tfC12 are frequency-dependent data vectors that
can be fit with rational-function approximation.

7 RF Toolbox Examples

7-32

2 The rationalfit function generates high-accuracy rational-function approximations. The
resulting approximations match the networks to machine accuracy.

3 The timeresp function computes the analytic solution to the state-space equations defined by a
rational-function approximation. This methodology is fast enough to enable one to push a million
bits through a channel.

Simulate cktC7 circuit.

tfC7 = s2tf(S_C7,0,Inf,2);
fitC7 = rationalfit(freq,tfC7);
outputC7 = timeresp(fitC7,input,sampleTime);

Simulate cktC12 circuit.

tfC12 = s2tf(S_C12,0,Inf,2);
fitC12 = rationalfit(freq,tfC12);
outputC12 = timeresp(fitC12,input,sampleTime);

Plot Transient Responses

The outputs match Figures 23 and 24 of the Pillage and Rohrer paper. Plot ramp response of low- to
mid-frequency MOS circuit interconnect with crosstalk.

figure
plot(t,input,t,outputC7,'LineWidth',2)
axis([0 2.5e-9 0 5.5]);
title('Ramp Response of Low- to Mid-Frequency MOS Circuit Interconnect with Crosstalk');
xlabel('Time (sec)');
ylabel('Voltage (volts)');
legend('Vinput','V(C7)','Location','NorthWest');

 MOS Interconnect and Crosstalk

7-33

Plot crosstalk in low- to mid-frequency MOS circuit interconnect with ramp input.

figure
plot(t,input,t,outputC12,'LineWidth',2)
axis([0 5e-9 0 .5])
title('Crosstalk in Low- to Mid-Frequency MOS Circuit Interconnect with Ramp Input')
xlabel('Time (sec)')
ylabel('Voltage (volts)')
legend('Vinput','V(C12)','Location','NorthEast')

7 RF Toolbox Examples

7-34

Verify Rational Fit Outside Fit Range

Though not shown in this example, you can also use the freqresp function to check the behavior of
rationalfit function well outside the specified frequency range. The fit outside the specified range
can sometimes cause surprising behavior, especially if frequency data near 0 Hz (DC) is not provided.

To perform this check for the rational-function approximation in this example, uncomment and run
the following MATLAB code.

% widerFreqs = logspace(0,12,1001);
% respC7 = freqresp(fitC7,widerFreqs);
% figure
% loglog(freq,abs(tfC7),'+',widerFreqs,abs(respC7))
% respC12 = freqresp(fitC12,widerFreqs);
% figure
% loglog(freq,abs(tfC12),'+',widerFreqs,abs(respC12))

For example on how to build and simulate this RC tree circuit using RFCKT objects, see “MOS
Interconnect and Crosstalk Using RFCKT Objects” on page 7-42.

See Also

More About
• “MOS Interconnect and Crosstalk Using RFCKT Objects” on page 7-42

 MOS Interconnect and Crosstalk

7-35

Bandpass Filter Response using RFCKT Objects
This example shows how to compute the time-domain response of a simple bandpass filter:

1 Choose inductance and capacitance values using the classic image parameter design method.
2 Use rfckt.seriesrlc, rfckt.shuntrlc, and rfckt.cascade objects to programmatically

construct a Butterworth circuit as a 2-port network.
3 Use analyze to extract the S-parameters of the 2-port network over a wide frequency range.
4 Use s2tf function to compute the voltage transfer function from the input to the output.
5 Use rationalfit function to generate rational fits that capture the ideal RC circuit to a very

high degree of accuracy.
6 Create a noisy input voltage waveform.
7 Use timeresp function to compute the transient response to a noisy input voltage waveform.

Design Bandpass Filter by Image Parameters

The image parameter design method is a framework for analytically computing the values of the
series and parallel components in passive filters. For more information on this method, see "Complete
Wireless Design" by Cotter W. Sayre, McGraw-Hill 2008 p. 331.

Figure 1: A Butterworth bandpass filter built out of two half-sections.

The following MATLAB® code generates component values for a bandpass filter with a lower 3-dB
cutoff frequency of 2.4 GHz and an upper 3 dB cutoff frequency of 2.5 GHz.

Ro = 50;
f1C = 2400e6;
f2C = 2500e6;

Ls = (Ro / (pi*(f2C - f1C)))/2;
Cs = 2*(f2C - f1C)/(4*pi*Ro*f2C*f1C);

Lp = 2*Ro*(f2C - f1C)/(4*pi*f2C*f1C);
Cp = (1/(pi*Ro*(f2C - f1C)))/2;

7 RF Toolbox Examples

7-36

Programmatically Construct Circuit as 2-Port Network

The L and C building blocks are formed by selecting appropriate values with the rfckt.shuntrlc
object shown in Figure 2 or the rfckt.seriesrlc object shown in Figure 3. The building blocks are
then connected together with rfckt.cascade as shown in Figure 4.

Figure 2: The 2-port network created by the rfckt.shuntrlc object

Figure 3: The 2-port network created by the rfckt.seriesrlc object

Figure 4: Connecting 2-port networks with the rfckt.cascade object

Seg1 = rfckt.seriesrlc('L',Ls,'C',Cs);
Seg2 = rfckt.shuntrlc('L',Lp,'C',Cp);
Seg3 = rfckt.shuntrlc('L',Lp,'C',Cp);
Seg4 = rfckt.seriesrlc('L',Ls,'C',Cs);

cktBPF = rfckt.cascade('Ckts',{Seg1,Seg2,Seg3,Seg4});

Extract S-Parameters From 2-Port Network

The analyze function extracts the S-parameters from a circuit over a specified vector of frequencies.
This example provides a set of frequencies that spans the passband of the filter and analyzes with the
default 50-Ohm reference, source impedance, and load impedances. Next, the s2tf function

 Bandpass Filter Response using RFCKT Objects

7-37

computes the voltage transfer function across the S-parameter model of the circuit. Finally, we
generate a high-accuracy rational approximation using the rationalfit function. The resulting
approximation matches the network to machine accuracy.

freq = linspace(2e9,3e9,101);
analyze(cktBPF,freq);
sparams = cktBPF.AnalyzedResult.S_Parameters;
tf = s2tf(sparams);
fit = rationalfit(freq,tf);

Verify that Rational Fit Tends to Zero

Use the freqresp function to verify that the rational fit approximation has reasonable behavior
outside both sides of the fitted frequency range.

widerFreqs = linspace(2e8,5e9,1001);
resp = freqresp(fit,widerFreqs);

figure
semilogy(freq,abs(tf),widerFreqs,abs(resp),'--','LineWidth',2)
xlabel('Frequency (Hz)')
ylabel('Magnitude')
legend('data','fit')
title('The rational fit behaves well outside the fitted frequency range.')

7 RF Toolbox Examples

7-38

Construct Input Signal to Test Band Pass Filter

This bandpass filter should be able to recover a sinusoidal signal at 2.45 GHz that is made noisy by
the inclusion of zero-mean random noise and a blocker at 2.35 GHz. The following MATLAB code
constructs such a signal from 4096 samples.

fCenter = 2.45e9;
fBlocker = 2.35e9;
period = 1/fCenter;
sampleTime = period/16;
signalLen = 8192;
t = (0:signalLen-1)'*sampleTime; % 256 periods

input = sin(2*pi*fCenter*t); % Clean input signal
rng('default')
noise = randn(size(t)) + sin(2*pi*fBlocker*t);
noisyInput = input + noise; % Noisy input signal

Compute Transient Response to Input Signal

The timeresp function computes the analytic solution to the state-space equations defined by the
rational fit and the input signal.

output = timeresp(fit,noisyInput,sampleTime);

View Input Signal and Filter Response in Time Domain

Plot the input signal, noisy input signal, and the band pass filter output in a figure window.

xmax = t(end)/8;
figure
subplot(3,1,1)
plot(t,input)
axis([0 xmax -1.5 1.5])
title('Input')

subplot(3,1,2)
plot(t,noisyInput)
axis([0 xmax floor(min(noisyInput)) ceil(max(noisyInput))])
title('Noisy Input')
ylabel('Amplitude (volts)')

subplot(3,1,3)
plot(t,output)
axis([0 xmax -1.5 1.5])
title('Filter Output')
xlabel('Time (sec)')

 Bandpass Filter Response using RFCKT Objects

7-39

View Input Signal and Filter Response in Frequency Domain

Overlaying the noisy input and the filter response in the frequency domain explains why the filtering
operation is successful. Both the blocker signal at 2.35 GHz and much of the noise is significantly
attenuated.

NFFT = 2^nextpow2(signalLen); % Next power of 2 from length of y
Y = fft(noisyInput,NFFT)/signalLen;
samplingFreq = 1/sampleTime;
f = samplingFreq/2*linspace(0,1,NFFT/2+1)';
O = fft(output,NFFT)/signalLen;

figure
subplot(2,1,1)
plot(freq,abs(tf),'b','LineWidth',2)
axis([freq(1) freq(end) 0 1.1])
legend('filter transfer function')
ylabel('Magnitude')

subplot(2,1,2)
plot(f,2*abs(Y(1:NFFT/2+1)),'g',f,2*abs(O(1:NFFT/2+1)),'r','LineWidth',2)
axis([freq(1) freq(end) 0 1.1])
legend('input+noise','output')
title('Filter characteristic and noisy input spectrum.')
xlabel('Frequency (Hz)')
ylabel('Magnitude (Volts)')

7 RF Toolbox Examples

7-40

See Also

More About
• “Bandpass Filter Response” on page 7-24
• “Operations with RF Circuit Objects” on page 7-169

 Bandpass Filter Response using RFCKT Objects

7-41

MOS Interconnect and Crosstalk Using RFCKT Objects
This example shows how to build and simulate an RC tree circuit using the RF Toolbox™.

In "Asymptotic Waveform Evaluation for Timing Analysis" (IEEE Transactions on Computer-Aided
Design, Vol., 9, No. 4, April 1990), Pillage and Rohrer presented and simulated an RC tree circuit that
models signal integrity and crosstalk in low- to mid-frequency MOS circuit interconnect. This example
confirms their simulations using RF Toolbox software.

Their circuit, reproduced in the following figure, consists of 11 resistors and 12 capacitors. In the
paper, Pillage and Rohrer:

• Apply a ramp voltage input
• Compute transient responses
• Plot the output voltages across two different capacitors, C7 and C12.

Figure 1: RC tree model of MOS interconnect with crosstalk.

With RF Toolbox software, you can programmatically construct this circuit in MATLAB and perform
signal integrity simulations.

This example shows:

1 How to use rfckt.seriesrlc, rfckt.shuntrlc, rfckt.series, and rfckt.cascade object
to programmatically construct the circuit as two different networks, depending on the desired
output.

2 How to use analyze function to extract the S-parameters for each 2-port network over a wide
frequency range.

3 How to use s2tf function with Zsource = 0 and Zload = Inf to compute the voltage transfer
function from input to each desired output.

7 RF Toolbox Examples

7-42

4 How to use rationalfit function to produce rational-function approximations that capture the
ideal RC-circuit behavior to a very high degree of accuracy.

5 How to use timeresp function to compute the transient response to the input voltage waveform.

Redraw Circuit as Distinct 2-Port Networks

To duplicate both output plots, RF Toolbox calculates the output voltage across C7 and C12. To that
end, the circuit must be expressed as two distinct 2-port networks, each with the appropriate
capacitor at the output. Figure 2 shows the 2-port configuration for computing the voltage across C7.
Figure 3 shows the configuration for C12. Both 2-port networks retain the original circuit topology,
and share much of the same structure.

Figure 2: The circuit drawn as a 2-port network with output across C7.

Figure 3: The circuit drawn as a 2-port network with output across C12.

Using RLC Building Blocks

All of the building blocks are formed by selecting appropriate values with the rfckt.shuntrlc
object shown in Figure 4 or the rfckt.seriesrlc object shown in Figure 5. The 2-port building
blocks are then connected using rfckt.cascade object as shown in Figure 6 or rfckt.series
object as shown in Figure 7.

 MOS Interconnect and Crosstalk Using RFCKT Objects

7-43

Figure 4: The 2-port network created using the rfckt.shuntrlc object.

Figure 5: The 2-port network created using the rfckt.seriesrlc object.

7 RF Toolbox Examples

7-44

Figure 6: Connect 2-port networks with the rfckt.cascade object.

Figure 7: Connect 2-port networks with the rfckt.series object.

Shared Pieces of 2-Port Networks

The following MATLAB code constructs the portion of the network shared between the two variants.

 MOS Interconnect and Crosstalk Using RFCKT Objects

7-45

R1 = rfckt.seriesrlc('R',10);
C1 = rfckt.shuntrlc('C',0.114e-12);
R9 = rfckt.shuntrlc('R',48);
C9 = rfckt.shuntrlc('C',0.007e-12);
R10 = rfckt.shuntrlc('R',24);
C10 = rfckt.shuntrlc('C',0.2e-12);
R10C10 = rfckt.series('Ckts',{R10,C10});
C9R10C10 = rfckt.cascade('Ckts',{C9,R10C10});
R9C9R10C10 = rfckt.series('Ckts',{R9,C9R10C10});
R2 = rfckt.seriesrlc('R',72);
C2 = rfckt.shuntrlc('C',1.238e-12);
R3 = rfckt.seriesrlc('R',34);
C3 = rfckt.shuntrlc('C',0.021e-12);
R4 = rfckt.seriesrlc('R',96);
C4 = rfckt.shuntrlc('C',0.028e-12);
R5 = rfckt.seriesrlc('R',72);
C5 = rfckt.shuntrlc('C',0.007e-12);
R6 = rfckt.seriesrlc('R',10);
C6 = rfckt.shuntrlc('C',1.048e-12);
R7 = rfckt.seriesrlc('R',120);
R8 = rfckt.shuntrlc('R',24);
C8 = rfckt.shuntrlc('C',0.2e-12);
R8C8 = rfckt.series('Ckts',{R8,C8});
sharedckt = rfckt.cascade('Ckts', ...
 {R1,C1,R9C9R10C10,R2,C2,R3,C3,R4,C4,R5,C5,R6,C6,R7,R8C8});

% Additional shared building blocks used in both 2-port networks.
C7 = rfckt.shuntrlc('C',0.47e-12);
R11C12 = rfckt.shuntrlc('R',1000,'C',1e-12);

Construct Each 2-Port Network

Figure 2 shows that constructing a 2-port network with an output port across C7 requires creating
C11 using rfckt.shuntrlc object, then combining C11 with R11 and C12 using rfckt.series
object, and finally combining C11R11C12 with the rest of the network and C7 using rfckt.cascade
object.

Similarly, Figure 3 shows that constructing a 2-port network with an output port across C12 requires
creating another version of C11 (C11b) using rfckt.seriesrlc object and combining all the parts
together using rfckt.cascade object.

Construct shunt RLC circuit.

C11 = rfckt.shuntrlc('C',0.1e-12);
C11R11C12 = rfckt.series('Ckts',{C11,R11C12});
cktC7 = rfckt.cascade('Ckts',{sharedckt,C11R11C12,C7});

Construct series RLC circuit.

C11b = rfckt.seriesrlc('C',0.1e-12);
cktC12 = rfckt.cascade('Ckts',{sharedckt,C7,C11b,R11C12});

Simulation Setup

The input signal used by Pillage and Rohrer is a voltage ramp from 0 to 5 volts with a rise time of one
nanosecond and a duration of ten nanoseconds. The following MATLAB code models this signal with
1000 timepoints with a sampleTime of 0.01 nanoseconds.

7 RF Toolbox Examples

7-46

The following MATLAB code also uses the logspace function to generate a vector of 101
logarithmically spaced analysis frequencies between 1 Hz and 100 GHz. Specifying a wide set of
frequency points improves simulation accuracy.

sampleTime = 1e-11;
t = (0:1000)'*sampleTime;
input = [(0:100)'*(5/100); (101:1000)'*0+5];
freq = logspace(0,11,101)';

Simulate Each 2-Port Network

To simulate each network:

1 The analyze function extracts S-parameters over the specified frequency range.
2 The s2tf function, with option = 2, computes the gain from the source voltage to the output

voltage. It allows arbitrary source and load impedances, in this case Zsource = 0 and Zload =
Inf. The resulting transfer functions tfC7 and tfC12 are frequency-dependent data vectors that
can be fit with rational-function approximation.

3 The rationalfit function generates high-accuracy rational-function approximations. The
resulting approximations match the networks to machine accuracy.

4 The timeresp function computes the analytic solution to the state-space equations defined by a
rational-function approximation. This methodology is fast enough to enable one to push a million
bits through a channel.

Simulate cktC7 circuit.

analyze(cktC7,freq);
sparamsC7 = cktC7.AnalyzedResult.S_Parameters;
tfC7 = s2tf(sparamsC7,50,0,Inf,2);
fitC7 = rationalfit(freq,tfC7);
outputC7 = timeresp(fitC7,input,sampleTime);

Simulate cktC12 circuit.

analyze(cktC12,freq);
sparamsC12 = cktC12.AnalyzedResult.S_Parameters;
tfC12 = s2tf(sparamsC12,50,0,Inf,2);
fitC12 = rationalfit(freq,tfC12);
outputC12 = timeresp(fitC12,input,sampleTime);

Plot Transient Responses

The outputs match Figures 23 and 24 of the Pillage and Rohrer paper. Plot the ramp response of low-
to mid-frequency MOS circuit interconnect with crosstalk.

figure
plot(t,input,t,outputC7,'LineWidth',2)
axis([0 2.5e-9 0 5.5]);
title('Ramp Response of Low- to Mid-Frequency MOS Circuit Interconnect with Crosstalk');
xlabel('Time (sec)');
ylabel('Voltage (volts)');
legend('Vinput','V(C7)','Location','NorthWest');

 MOS Interconnect and Crosstalk Using RFCKT Objects

7-47

Plot the crosstalk in low- to mid-frequency MOS circuit interconnect with ramp input.

figure
plot(t,input,t,outputC12,'LineWidth',2)
axis([0 5e-9 0 .5]);
title('Crosstalk in Low- to Mid-frequency MOS Circuit Interconnect with Ramp Input');
xlabel('Time (sec)');
ylabel('Voltage (volts)');
legend('Vinput','V(C12)','Location','NorthEast');

7 RF Toolbox Examples

7-48

Verify Rational Fit Outside Fit Range

Though not shown in this example, you can also use the freqresp function to check the behavior of
rationalfit function well outside the specified frequency range. The fit outside the specified range
can sometimes cause surprising behavior, especially if frequency data near 0 Hz (DC) was not
provided.

To perform this check for the rational-function approximation in this example, uncomment and run
the following MATLAB code.

% widerFreqs = logspace(0,12,1001);
% respC7 = freqresp(fitC7,widerFreqs);
% figure
% loglog(freqs,abs(tfC7),'+',widerFreqs,abs(respC7))
% respC12 = freqresp(fitC12,widerFreqs);
% figure
% loglog(freqs,abs(tfC12),'+',widerFreqs,abs(respC12))

See Also

More About
• “MOS Interconnect and Crosstalk” on page 7-30

 MOS Interconnect and Crosstalk Using RFCKT Objects

7-49

Modeling a High-Speed Backplane (Measured 16-Port S-
Parameters to 4-Port S-Parameters)

This example shows how to use RF Toolbox™ to import N-port S-parameters representing high-speed
backplane channels, and converts 16-port S-parameters to 4-port S-parameters to model the channels
and the crosstalk between the channels.

With the 4-port S-parameters, a rational function object can be built for a differential channel. The
second part of the example -- “Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational
Function)” on page 7-55 -- will show how to use rational functions to model a differential high-speed
backplane channel.

With the rational function object, the Time-Domain Reflectometry and Time-Domain Transmission can
be calculated for a differential channel. The third part of the example -- “Modeling a High-Speed
Backplane (4-Port S-Parameters to Differential TDR and TDT)” on page 7-62 -- will show how to use
rational functions to calculate the Time-Domain Reflectometry and Time-Domain Transmission.

With the rational function object, a Simulink® model can be built for a differential channel. The
fourth part of the example -- “Modeling a High-Speed Backplane (Rational Function to a Simulink®
Model)” on page 7-65 -- will show how to build a Simulink model from a rational function.

With the rational function object, a Verilog-A module can also be generated for a differential channel.
The fifth part of the example -- “Modeling a High-Speed Backplane (Rational Function to a Verilog-A
Module)” on page 7-69 -- will show how to generate a Verilog-A module from a rational function.

Figure 1: 16-Port differential backplane

Read the Single-Ended 16-Port S-Parameters

Read a Touchstone® data file into an sparameters object. The data in this file are the 50-ohm S-
parameters of a 16-port differential backplane designed for a 2-Gbps high-speed signal, shown in
Figure 1, measured at 1496 frequencies ranging from 50 MHz to 15 GHz.

filename = 'default.s16p';
backplane = sparameters(filename)

backplane =
 sparameters: S-parameters object

 NumPorts: 16

7 RF Toolbox Examples

7-50

 Frequencies: [1496x1 double]
 Parameters: [16x16x1496 double]
 Impedance: 50

 rfparam(obj,i,j) returns S-parameter Sij

freq = backplane.Frequencies;

Convert the 16-Port S-Parameters to 4-Port S-Parameters to Model a Differential Channel

Use the snp2smp function to convert 16-port S-parameters to 4-port S-parameters that represent the
first differential channel. The port index of this differential channel, N2M, specifies how the ports of
the 16-port S-parameters map to the ports of the 4-port S-parameters, is [1 16 2 15]. (The port
indices of the second, third and fourth channels are [3 14 4 13], [5 12 6 11] and [7 10 8 9],
respectively). The other 12 ports, [3 4 5 6 7 8 9 10 11 12 13 14], are terminated with the
characteristic Impedance specified by the sparameters object. Then, create an sparameters
object with 4-port S-parameters for the first differential channel.

 (Port 1) (Port 16)
 Port 1 > ----->| |<----- < Port 2
 | DUT |
 Port 3 > ----->| |<----- < Port 4
 (Port 2) (Port 15)

n2m = [1 16 2 15];
z0 = backplane.Impedance;
first4portdata = snp2smp(backplane.Parameters,z0,n2m,z0);
first4portsparams = sparameters(first4portdata,freq,z0)

first4portsparams =
 sparameters: S-parameters object

 NumPorts: 4
 Frequencies: [1496x1 double]
 Parameters: [4x4x1496 double]
 Impedance: 50

 rfparam(obj,i,j) returns S-parameter Sij

Plot S21 and S43 of the first differential channel.

figure
rfplot(first4portsparams,2,1)
hold on
rfplot(first4portsparams,4,3,'-r')

 Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)

7-51

% % If you want to write the 4-port S-parameters of the differential
% % channel into a |.s4p| file, then uncomment the line below.
%
% rfwrite(first4portsparams,'firstchannel.s4p')

Convert 16-Port S-Parameters to 4-Port S-Parameters to Model the Crosstalk Between Two
Differential Channels

Use the snp2smp function to convert 16-port S-parameters to 4-port S-parameters that represent the
crosstalk between port [3 4] and port [16 15]. As shown in Figure 1, these ports are on different
channels. The other 12 ports, [1 2 5 6 7 8 9 10 11 12 13 14], are terminated with the
characteristic Impedance specified by the sparameters object. Then, create an sparameters
object with 4-port S-parameters for the crosstalk.

 (Port 3) (Port 16)
 Port 1 > ----->| |<----- < Port 2
 | DUT |
 Port 3 > ----->| |<----- < Port 4
 (Port 4) (Port 15)

n2m = [3 16 4 15];
crosstalk4portdata = snp2smp(backplane.Parameters,z0,n2m,z0);
crosstalk4portsparams = sparameters(crosstalk4portdata,freq,z0)

crosstalk4portsparams =
 sparameters: S-parameters object

 NumPorts: 4

7 RF Toolbox Examples

7-52

 Frequencies: [1496x1 double]
 Parameters: [4x4x1496 double]
 Impedance: 50

 rfparam(obj,i,j) returns S-parameter Sij

Plot S21, S43, S12 and S34 to show the crosstalk between these two channels.

figure
rfplot(crosstalk4portsparams,2,1)
hold on
rfplot(crosstalk4portsparams,4,3,'-r')
rfplot(crosstalk4portsparams,1,2,'-k')
rfplot(crosstalk4portsparams,3,4,'-g')

% % If you want to write the 4-port S-parameters of the crosstalk into an
% % .s4p file, then uncomment the line below.
%
% rfwrite(crosstalk4portsparams,'crosstalk.s4p')

See Also

More About
• “Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)” on page 7-55

 Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)

7-53

• “Modeling a High-Speed Backplane (4-Port S-Parameters to Differential TDR and TDT)” on page
7-62

• “Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)” on page 7-69

7 RF Toolbox Examples

7-54

Modeling a High-Speed Backplane (4-Port S-Parameters to a
Rational Function)

This example shows how to use RF Toolbox™ to model a differential high-speed backplane channel
using rational functions. This type of model is useful to signal integrity engineers, whose goal is to
reliably connect high-speed semiconductor devices with, for example, multi-Gbps serial data streams
across backplanes and printed circuit boards.

Compared to traditional techniques such as linear interpolation, rational function fitting provides
more insight into the physical characteristics of a high-speed backplane. It provides a means, called
model order reduction, of making a trade-off between complexity and accuracy. For a given accuracy,
rational functions are less complex than other types of models such as FIR filters generated by IFFT
techniques. In addition, rational function models inherently constrain the phase to be zero on
extrapolation to DC. Less physically-based methods require elaborate constraint algorithms in order
to force the extrapolated phase to zero at DC.

Figure 1: A differential high-speed backplane channel

Read the Single-Ended 4-Port S-Parameters and Convert Them to Differential 2-Port S-
Parameters

Read a Touchstone® data file, default.s4p, into an sparameters object. The parameters in this
data file are the 50-ohm S-parameters of the single-ended 4-port passive circuit shown in Figure 1,
given at 1496 frequencies ranging from 50 MHz to 15 GHz. Then, get the single-ended 4-port S-
parameters and use the matrix conversion function s2sdd to convert them to differential 2-port S-
parameters. Finally, plot the differential S11 parameter on a Smith chart.

 Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

7-55

filename = 'default.s4p';
backplane = sparameters(filename);
data = backplane.Parameters;
freq = backplane.Frequencies;
z0 = backplane.Impedance;

Convert to 2-port differential S-parameters.

diffdata = s2sdd(data);
diffz0 = 2*z0;

By default, s2sdd expects ports 1 & 3 to be inputs and ports 2 & 4 to be outputs. However if your data
has ports 1 & 2 as inputs and ports 3 & 4 as outputs, then use 2 as the second input argument to
s2sdd function to specify this alternate port arrangement. For example, diffdata =
s2sdd(data,2);

diffsparams = sparameters(diffdata,freq,diffz0)

diffsparams =
 sparameters: S-parameters object

 NumPorts: 2
 Frequencies: [1496x1 double]
 Parameters: [2x2x1496 double]
 Impedance: 100

 rfparam(obj,i,j) returns S-parameter Sij

figure
smithplot(diffsparams,1,1)

7 RF Toolbox Examples

7-56

Compute the Transfer Function and Its Rational Function Object Representation

First, use the s2tf function to compute the differential transfer function. Then, use the
rationalfit function to compute the analytical form of the transfer function and store it in an
rfmodel.rational object. The rationalfit function fits a rational function object to the specified
data over the specified frequencies. The run time depends on the computer, the fitting tolerance, the
number of data points, etc.

difftransfunc = s2tf(diffdata,diffz0,diffz0,diffz0);
delayfactor = 0.98; % Delay factor. Leave at the default of zero if your
 % data does not have a well-defined principle delay
rationalfunc = rationalfit(freq,difftransfunc,'DelayFactor',delayfactor)

rationalfunc =
 rfmodel.rational with properties:

 A: [31x1 double]
 C: [31x1 double]
 D: 0
 Delay: 6.5521e-09
 Name: 'Rational Function'

npoles = length(rationalfunc.A);
fprintf('The derived rational function contains %d poles.\n',npoles);

The derived rational function contains 31 poles.

 Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

7-57

Validate the Differential-Mode Frequency Response

Use the freqresp method of the rfmodel.rational object to get the frequency response of the
rational function object. Then, create a plot to compare the frequency response of the rational
function object and that of the original data. Note that detrended phase (i.e. phase after the principle
delay is removed) is plotted in both cases.

freqsforresp = linspace(0,20e9,2000)';
resp = freqresp(rationalfunc,freqsforresp);

figure
subplot(2,1,1)
plot(freq*1.e-9,20*log10(abs(difftransfunc)),'r',freqsforresp*1.e-9, ...
 20*log10(abs(resp)),'b--','LineWidth',2)
title(sprintf('Rational Fitting with %d poles',npoles),'FontSize',12)
ylabel('Magnitude (decibels)')
xlabel('Frequency (GHz)')
legend('Original data','Fitting result')

subplot(2,1,2)
origangle = unwrap(angle(difftransfunc))*180/pi+360*freq*rationalfunc.Delay;
plotangle = unwrap(angle(resp))*180/pi+360*freqsforresp*rationalfunc.Delay;
plot(freq*1.e-9,origangle,'r',freqsforresp*1.e-9,plotangle,'b--', ...
 'LineWidth',2)
ylabel('Detrended phase (deg.)')
xlabel('Frequency (GHz)')
legend('Original data','Fitting result')

7 RF Toolbox Examples

7-58

Calculate and Plot the Differential Input and Output Signals of the High-Speed Backplane

Generate a random 2 Gbps pulse signal. Then, use the timeresp method of the rfmodel.rational
object to compute the response of the rational function object to the random pulse. Finally, plot the
input and output signals of the rational function model that represents the differential circuit.

datarate = 2*1e9; % Data rate: 2 Gbps
samplespersymb = 100;
pulsewidth = 1/datarate;
ts = pulsewidth/samplespersymb;
numsamples = 2^17;
numplotpoints = 10000;

t_in = double((1:numsamples)')*ts;
input = sign(randn(1,ceil(numsamples/samplespersymb)));
input = repmat(input,[samplespersymb, 1]);
input = input(:);
[output,t_out] = timeresp(rationalfunc,input,ts);

figure
subplot(2,1,1)
plot(t_in(1:numplotpoints)*1e9,input(1:numplotpoints),'LineWidth',2)
title([num2str(datarate*1e-9),' Gbps signal'],'FontSize',12)
ylabel('Input signal')
xlabel('Time (ns)')
axis([-inf,inf,-1.5,1.5])

subplot(2,1,2)
plot(t_out(1:numplotpoints)*1e9,output(1:numplotpoints),'LineWidth',2)
ylabel('Output signal')
xlabel('Time (ns)')
axis([-inf,inf,-1.5,1.5])

 Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

7-59

Plot the Eye Diagram of the 2-Gbps Output Signal

Estimate and remove the delay from the output signal and create an eye diagram by using
Communications Toolbox™ functions.

if ~isempty(which('comm.EyeDiagram'))
 eyedi = comm.EyeDiagram('SampleRate',1./ts, ...
 'SamplesPerSymbol',samplespersymb,'DisplayMode','2D color histogram');
 % Update the eye diagram object with the transmitted signal
 estdelay = floor(rationalfunc.Delay/ts);
 eyedi(output(estdelay+1:end));
end

Warning: comm.EyeDiagram will be removed in a future release. Use eyediagram instead.

7 RF Toolbox Examples

7-60

See Also

More About
• “Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)”

on page 7-50
• “Modeling a High-Speed Backplane (4-Port S-Parameters to Differential TDR and TDT)” on page

7-62
• “Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)” on page 7-65

 Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)

7-61

Modeling a High-Speed Backplane (4-Port S-Parameters to
Differential TDR and TDT)

This example shows how to use RF Toolbox™ functions to calculate the TDR (Time-Domain
Reflectometry) and TDT (Time-Domain Transmission) of a differential high-speed backplane channel.

Read the Single-Ended 4-Port S-Parameters and Convert Them to Differential 2-Port S-
Parameters

Read a Touchstone® data file, default.s4p, into an sparameters object. The parameters in this
data file are the 50-ohm S-parameters of a single-ended 4-port passive circuit, measured at 1496
frequencies ranging from 50 MHz to 15 GHz. Then, get the single-ended 4-port S-parameters from
the data object, and use the matrix conversion function s2sdd to convert them to differential 2-port
S-parameters.

filename = 'default.s4p';
backplane = sparameters(filename);
data = backplane.Parameters;
freq = backplane.Frequencies;
z0 = backplane.Impedance;

Convert to 2-port differential S-parameters.

diffdata = s2sdd(data);
diffsparams = sparameters(diffdata,freq,2*z0);

Calculate and Plot the Differential Time-Domain Reflectometry

TDR is the reflected voltage signal for a step input. First, extract the differential S11 data using the
rfparam function, and convert the S11 data to TDR voltage transfer function data [1]. Next, create a
rational function of that data using the rationalfit function, then compute the TDR using the
stepresp function of the rfmodel.rational object. Lastly, plot the calculated TDR.

s11 = rfparam(diffsparams,1,1);
Vin = 1;
tdrfreqdata = Vin*(s11+1)/2;
tdrfit = rationalfit(freq,tdrfreqdata,'NPoles',350);
Ts = 5e-12;
N = 5000; % number of samples
Trise = 5e-11; % Define a step signal
[Vtdr,tdrT] = stepresp(tdrfit,Ts,N,Trise);
figure
plot(tdrT*1e9,Vtdr,'r','LineWidth',2)
ylabel('Differential TDR (V)')
xlabel('Time (ns)')
legend('Calculated TDR')
ylim([0.46 0.55])

7 RF Toolbox Examples

7-62

Calculate and Plot the Differential Time-Domain Transmission

TDT is the transmitted voltage signal for a step input. Use the rationalfit function to get the
rational function object of the TDT voltage frequency data, then use the stepresp function to
compute TDT. Lastly, plot the calculated TDT.

delayfactor = 0.98; % Delay factor. Set delay factor to zero if your
 % data does not have a well-defined delay
s21 = rfparam(diffsparams,2,1);
tdtfreqdata = Vin*s21/2;
tdtfit = rationalfit(freq,tdtfreqdata,'DelayFactor',delayfactor);
Ts = 5e-12;
N = 5000; % number of samples
Trise = 5e-11;
[tdt,tdtT] = stepresp(tdtfit,Ts,N,Trise);
figure
plot(tdtT(1:N)*1e9,tdt(1:N),'r','LineWidth',2)
ylabel('Differential TDT (V)')
xlabel('Time (ns)')
legend('Calculated TDT','Location','best')

 Modeling a High-Speed Backplane (4-Port S-Parameters to Differential TDR and TDT)

7-63

References

[1] A. S. Ali, R. Mittra. "Time-Domain Reflectometry using Scattering Parameters and a De-
Embedding Application" Technical Report, Electromagnetic Communication Laboratory Report No.
86-4, May 1986.

See Also

More About
• “Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)”

on page 7-50
• “Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)” on page 7-55
• “Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)” on page 7-65

7 RF Toolbox Examples

7-64

Modeling a High-Speed Backplane (Rational Function to a
Simulink® Model)

This example shows how to use Simulink® to simulate a differential high-speed backplane channel.
The example first reads a Touchstone® data file that contains single-ended 4-port S-parameters for a
differential high-speed backplane and converts them to 2-port differential S-parameters. It computes
the transfer function of the differential circuit and uses the rationalfit function to fit a closed-
form rational function to the circuit's transfer function. Then, the example converts the poles and
residues of the rational function object into the numerators and denominators of the Laplace
Transform S-Domain transfer functions that it uses to build the Simulink model of the rational
function object.

To run this example, you must have Simulink installed.

Read the Single-Ended 4-Port S-Parameters and Convert Them to Differential 2-Port S-
Parameters

Read a Touchstone data file, default.s4p, into an sparameters object. The parameters in this data
file are the 50-ohm S-parameters of a single-ended 4-port passive circuit, measured at 1496
frequencies ranging from 50 MHz to 15 GHz. Then, get the single-ended 4-port S-parameters from
the data object, and use the matrix conversion function s2sdd to convert them to differential 2-port
S-parameters.

filename = 'default.s4p';
backplane = sparameters(filename);
data = backplane.Parameters;
freq = backplane.Frequencies;
z0 = backplane.Impedance;

Convert to 2-port differential S-parameters. This operation pairs together odd-numbered ports first,
followed by the even-numbered ports. If a different configuration has been used to measure the single
ended S-parameters, you can specify a different second argument in the s2sdd command. For
example, option "2" will allow you to pair the input and output ports in ascending order. Alternatively,
you can use the command snp2smp to change the port order.

diffdata = s2sdd(data,1);
diffz0 = 2*z0;

Compute the Transfer Function and Its Rational Function Representation

First, use the s2tf function to compute the differential transfer function. Then, use the
rationalfit function to compute the closed form of the transfer function and store it in an
rfmodel.rational object. The rationalfit function fits a rational function object to the specified
data over the specified frequencies.

difftf = s2tf(diffdata,diffz0,diffz0,diffz0);
fittol = -30; % Rational fitting tolerance in dB
delayfactor = 0.9; % Delay factor
rationalfunc = rationalfit(freq,difftf,fittol,'DelayFactor', delayfactor)
npoles = length(rationalfunc.A);
fprintf('The derived rational function contains %d poles.\n', npoles);

rationalfunc =

 Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)

7-65

 rfmodel.rational with properties:

 A: [20x1 double]
 C: [20x1 double]
 D: 0
 Delay: 6.0172e-09
 Name: 'Rational Function'

The derived rational function contains 20 poles.

Get the Numerator and Denominator of the Laplace Transform S-Domain Transfer Functions

This example uses Laplace Transform S-Domain transfer functions to represent the backplane in the
Simulink model. Convert the poles and corresponding residues of the rational function object into
numerator and denominator form for use in the Laplace Transform transfer function blocks. Each
transfer function block represents either one real pole and the corresponding real residue, or a pair
of complex conjugate poles and residues, so the transfer function block always has real coefficients.
For this example, the rational function object contains 2 real poles/residues and 6 pairs of complex
poles/residues, so the Simulink model contains 8 transfer function blocks.

A = rationalfunc.A;
C = rationalfunc.C;
den = cell(size(A));
num = cell(size(A));
k = 1; % Index of poles and residues
n = 0; % Index of numerators and denominators
while k <= npoles
 if isreal(A(k)) % Real poles
 n = n + 1;
 num{n} = C(k);
 den{n} = [1, -A(k)];
 k = k + 1;
 else % Complex poles
 n = n + 1;
 real_a = real(A(k));
 imag_a = imag(A(k));
 real_c = real(C(k));
 imag_c = imag(C(k));
 num{n} = [2*real_c, -2*(real_a*real_c+imag_a*imag_c)];
 den{n} = [1, -2*real_a, real_a^2+imag_a^2];
 k = k + 2;
 end
end
den = den(1:n);
num = num(1:n);

Build the Simulink Model of the Backplane

Build a Simulink model of the backplane using the Laplace Transform transfer functions. Then,
connect a random source to the input of the backplane and a scope to its input and output.

modelname = fliplr(strtok(fliplr(tempname), filesep));
simulink_rfmodel_build_rational_system_helper(modelname , numel(num))
simulink_rfmodel_add_source_sink_helper(modelname)

7 RF Toolbox Examples

7-66

Figure 1. Simulink model for a rational function

Simulate the Simulink Model of the Rational Function

When you simulate the model, the Scope shows the impact of the differential backplane on the
random input signal.

set_param([modelname,'/Rational Model Output'], 'Open', 'on')
h = findall(0, 'Type', 'Figure', 'Name', 'Rational Model Output');
h.Position = [200, 216, 901, 442];
sim(modelname);

 Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)

7-67

Close the Model

close_system(modelname, 0)

See Also

More About
• “Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)” on page 7-69
• “Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)”

on page 7-50

7 RF Toolbox Examples

7-68

Modeling a High-Speed Backplane (Rational Function to a
Verilog-A Module)

This example shows how to use RF Toolbox™ functions to generate a Verilog-A module that models
the high-level behavior of a high-speed backplane. First, it reads the single-ended 4-port S-
parameters for a differential high-speed backplane and converts them to 2-port differential S-
parameters. Then, it computes the transfer function of the differential circuit and fits a rational
function to the transfer function. Next, the example exports a Verilog-A module that describes the
model. Finally, it plots the unit step response of the generated Verilog-A module in a third-party
circuit simulation tool.

Use a Rational Function Object to Describe the High-Level Behavior of a High-Speed
Backplane

Read a Touchstone® data file, default.s4p, into an sparameters object. The parameters in this
data file are the 50-ohm S-parameters of a single-ended 4-port passive circuit, measured at 1496
frequencies ranging from 50 MHz to 15 GHz. Then, extract the single-ended 4-port S-parameters
from the data stored in the Parameters property of the sparameters object, use the s2sdd
function to convert them to differential 2-port S-parameters, and use the s2tf function to compute
the transfer function of the differential circuit. Then, use the rationalfit function to generate an
rfmodel.rational object that describes the high-level behavior of this high-speed backplane. The
rfmodel.rational object is a rational function object that expresses the circuit's transfer function
in closed form using poles, residues, and other parameters, as described in the rationalfit
reference page.

filename = 'default.s4p';
backplane = sparameters(filename);
data = backplane.Parameters;
freq = backplane.Frequencies;
z0 = backplane.Impedance;

Convert to 2-port differential S-parameters.

diffdata = s2sdd(data);
diffz0 = 2*z0;
difftf = s2tf(diffdata,diffz0,diffz0,diffz0);

Fit the differential transfer function into a rational function.

fittol = -30; % Rational fitting tolerance in dB
delayfactor = 0.9; % Delay factor
rationalfunc = rationalfit(freq,difftf,fittol,'DelayFactor',delayfactor)

rationalfunc =
 rfmodel.rational with properties:

 A: [20x1 double]
 C: [20x1 double]
 D: 0
 Delay: 6.0172e-09
 Name: 'Rational Function'

 Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)

7-69

Export the Rational Function Object as a Verilog-A Module

Use the writeva method of the rfmodel.rational object to export the rational function object as
a Verilog-A module, called samplepassive1, that describes the rational model. The input and output
nets of samplepassive1 are called line_in and line_out. The predefined Verilog-A discipline,
electrical, describes the attributes of these nets. The format of numeric values, such as the
Laplace transform numerator and denominator coefficients, is %12.10e. The electrical discipline is
defined in the file disciplines.vams, which is included in the beginning of the
samplepassive1.va file.

workingdir = tempname;
mkdir(workingdir)
writeva(rationalfunc, fullfile(workingdir,'samplepassive1'), ...
 'line_in', 'line_out', 'electrical', '%12.10e', 'disciplines.vams');

type(fullfile(workingdir,'samplepassive1.va'));

// Module: samplepassive1

// Generated by MATLAB(R) 9.10 and the RF Toolbox 4.1.

// Generated on: 24-Feb-2021 11:06:50

`include "disciplines.vams"

module samplepassive1(line_in, line_out);
 electrical line_in, line_out;
 electrical node1;

 real nn1[0:1], nn2[0:1], nn3[0:1], nn4[0:1], nn5[0:1], nn6[0:1], nn7[0:1], nn8[0:1], nn9[0:1], nn10[0:0], nn11[0:0];
 real dd1[0:2], dd2[0:2], dd3[0:2], dd4[0:2], dd5[0:2], dd6[0:2], dd7[0:2], dd8[0:2], dd9[0:2], dd10[0:1], dd11[0:1];

 analog begin

 @(initial_step) begin
 nn1[0] = -3.8392614832e+18;
 nn1[1] = 5.2046393014e+07;
 dd1[0] = 2.8312609831e+21;
 dd1[1] = 3.5124823781e+09;
 dd1[2] = 1.0000000000e+00;
 nn2[0] = -2.0838483814e+19;
 nn2[1] = 5.3487174018e+08;
 dd2[0] = 1.8020362314e+21;
 dd2[1] = 7.8266367089e+09;
 dd2[2] = 1.0000000000e+00;
 nn3[0] = 1.7726270794e+19;
 nn3[1] = 2.5185716022e+09;
 dd3[0] = 1.2157471895e+21;
 dd3[1] = 8.1132784895e+09;
 dd3[2] = 1.0000000000e+00;
 nn4[0] = 2.3112282793e+20;
 nn4[1] = 9.2690544437e+08;
 dd4[0] = 7.9582429152e+20;
 dd4[1] = 1.1379108659e+10;
 dd4[2] = 1.0000000000e+00;
 nn5[0] = 8.9321469721e+19;
 nn5[1] = -1.4945928109e+10;
 dd5[0] = 4.1473706594e+20;

7 RF Toolbox Examples

7-70

 dd5[1] = 1.1346735824e+10;
 dd5[2] = 1.0000000000e+00;
 nn6[0] = -3.5180951909e+20;
 nn6[1] = -1.9895507212e+10;
 dd6[0] = 1.9080843811e+20;
 dd6[1] = 1.0434555792e+10;
 dd6[2] = 1.0000000000e+00;
 nn7[0] = -1.0593240107e+20;
 nn7[1] = 1.9248932577e+10;
 dd7[0] = 6.1152960549e+19;
 dd7[1] = 1.0001203231e+10;
 dd7[2] = 1.0000000000e+00;
 nn8[0] = 5.4441539403e+16;
 nn8[1] = -9.7818749687e+06;
 dd8[0] = 4.3821946493e+19;
 dd8[1] = 6.6700188623e+08;
 dd8[2] = 1.0000000000e+00;
 nn9[0] = 2.2556903052e+16;
 nn9[1] = 7.9711163023e+06;
 dd9[0] = 2.1228807651e+19;
 dd9[1] = 4.9531801417e+08;
 dd9[2] = 1.0000000000e+00;
 nn10[0] = 1.1592988960e+10;
 dd10[0] = 3.0829914556e+09;
 dd10[1] = 1.0000000000e+00;
 nn11[0] = 1.2852839051e+08;
 dd11[0] = 5.9779845807e+08;
 dd11[1] = 1.0000000000e+00;
 end

 V(node1) <+ laplace_nd(V(line_in), nn1, dd1);
 V(node1) <+ laplace_nd(V(line_in), nn2, dd2);
 V(node1) <+ laplace_nd(V(line_in), nn3, dd3);
 V(node1) <+ laplace_nd(V(line_in), nn4, dd4);
 V(node1) <+ laplace_nd(V(line_in), nn5, dd5);
 V(node1) <+ laplace_nd(V(line_in), nn6, dd6);
 V(node1) <+ laplace_nd(V(line_in), nn7, dd7);
 V(node1) <+ laplace_nd(V(line_in), nn8, dd8);
 V(node1) <+ laplace_nd(V(line_in), nn9, dd9);
 V(node1) <+ laplace_nd(V(line_in), nn10, dd10);
 V(node1) <+ laplace_nd(V(line_in), nn11, dd11);
 V(line_out) <+ absdelay(V(node1), 6.0171901584e-09);
 end
endmodule

Plot the Unit Step Response of the Generated Verilog-A Module

Many third-party circuit simulation tools support the Verilog-A standard. These tools simulate
standalone components defined by Verilog-A modules and circuits that contain these components. The
following figure shows the unit step response of the samplepassive1 module. The figure was
generated with a third-party circuit simulation tool.

 Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)

7-71

Figure 1: The unit step response.

delete(fullfile(workingdir,'samplepassive1.va'));
rmdir(workingdir)

See Also

More About
• “Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)” on page 7-65
• “Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)”

on page 7-50

7 RF Toolbox Examples

7-72

Using 'NPoles' Parameter With rationalfit
This example shows how to use the 'NPoles' parameter to improve the quality of the output of
rationalfit. By default, the rationalfit function uses 48 or fewer poles to find the rational
function that best matches the data. If 48 poles is not enough, it may be advantageous to change the
range of the number of poles used by rationalfit.

First, read in the bandpass filter data contained in the file npoles_bandpass_example.s2p, and
plot the S21 data. Next, use the rationalfit function to fit a rational function to the S21 data, with
the 'NPoles' parameter set to its default value, and visually compare the results to the original data.
Lastly, use rationalfit again, this time specifying a larger number of poles, and see if the result
improves.

Read and Visualize Data

S = sparameters('npoles_bandpass_example.s2p');
figure
subplot(2,1,1)
rfplot(S,2,1,'db')
subplot(2,1,2)
rfplot(S,2,1,'angle')

Analyze Output of rationalfit When Using Default Value for 'NPoles'

Use the rfparam function to extract the S21 values, and then call rationalfit.

 Using 'NPoles' Parameter With rationalfit

7-73

s21 = rfparam(S,2,1);
datafreq = S.Frequencies;
defaultfit = rationalfit(datafreq,s21);

Warning: Achieved only -13.0 dB accuracy with 48 poles, not -40.0 dB. Consider specifying a larger number of poles using the 'NPoles' parameter.

Use the freqresp function to calculate the response of the output of rationalfit.

respfreq = 2.25e9:2e5:2.75e9;
defaultresp = freqresp(defaultfit,respfreq);

Compare the original data against the frequency response of the default rational function calculated
by rationalfit.

subplot(2,1,1)
plot(datafreq,20*log10(abs(s21)),'.-')
hold on
plot(respfreq,20*log10(abs(defaultresp)))
hold off
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
defaultnpoles = numel(defaultfit.A);
defaultstr = ['Default NPoles (Uses ',num2str(defaultnpoles),' poles)'];
title(defaultstr)
legend('Original Data','Default rationalfit','Location','best')
subplot(2,1,2)
plot(datafreq,unwrap(angle(s21))*180/pi,'.-')
hold on
plot(respfreq,unwrap(angle(defaultresp))*180/pi)
hold off
xlabel('Frequency (Hz)')
ylabel('Angle (degrees)')
legend('Original Data','Default rationalfit','Location','best')

7 RF Toolbox Examples

7-74

Analyzing how well the output of rationalfit matches the original data, it appears that while the
default values of rationalfit do a reasonably good job in the center of the bandpass region, the fit
is poor on the edges of the bandpass region. It is possible that using a more complex rational function
will achieve a better fit.

Analyze Output of rationalfit When Using Custom Value for 'NPoles'

Fit the original S21 data, but this time, instruct rationalfit to use between 49 and 60 poles using
the 'NPoles' parameter.

customfit = rationalfit(datafreq,s21,'NPoles',[49 60]);
customresp = freqresp(customfit,respfreq);

Compare the original data against the frequency response of the custom rational function calculated
by rationalfit.

figure
subplot(2,1,1)
plot(datafreq,20*log10(abs(s21)),'.-')
hold on
plot(respfreq,20*log10(abs(customresp)))
hold off
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
customnpoles = numel(customfit.A);
customstr = ['NPoles = [49 60] (Uses ',num2str(customnpoles),' poles)'];
title(customstr)

 Using 'NPoles' Parameter With rationalfit

7-75

legend('Original Data','Custom rationalfit','Location','best')
subplot(2,1,2)
plot(datafreq,unwrap(angle(s21))*180/pi,'.-')
hold on
plot(respfreq,unwrap(angle(customresp))*180/pi)
hold off
xlabel('Frequency (Hz)')
ylabel('Angle (degrees)')
legend('Original Data','Custom rationalfit','Location','best')

The fit using a larger number of poles is clearly more precise.

See Also

More About
• “Using 'Weight' Parameter With rationalfit” on page 7-77
• “Using 'DelayFactor' Parameter With rationalfit” on page 7-83
• “Using Rational Object to Fit S-Parameters” on page 7-212

7 RF Toolbox Examples

7-76

Using 'Weight' Parameter With rationalfit
This example shows how to use the 'Weight' parameter to improve the quality of the output of
rationalfit.

By default, the rationalfit function minimizes the absolute error between the data and the
rational function, treating all data points equally. If you want to emphasize some of the data points
more than the others, use the 'Weight' parameter.

For example, If the magnitude of the input data has a large dynamic range, it is often useful to be
more concerned with the relative error at each data point, rather than the absolute error at each data
point, so that the data points with relatively smaller magnitudes are fit accurately. The common way
to do this is to set the 'Weight' parameter to 1./abs(data).

To put the example above in practice, follow the steps below.

• Read in the SAW filter data contained in the file sawfilter.s2p, and plot the S21 data.
• Use the rationalfit function to fit a rational function to the S21 data, with the 'Weight'

parameter set to its default value, and visually compare the results to the original data.
• Use rationalfit again, this time specifying the 'Weight' parameter to be 1./abs(S21), and

see if the result improves.

Read and Visualize Data

Read and visualize SAW filter S-parameters data.

S = sparameters('sawfilter.s2p');
figure
subplot(2,1,1)
rfplot(S,2,1,'db')
subplot(2,1,2)
rfplot(S,2,1,'angle')

 Using 'Weight' Parameter With rationalfit

7-77

Analyze Output of rationalfit When Using Default Value for 'Weight'

Use the rfparam function to extract the S21 values, and then call rationalfit.

s21 = rfparam(S,2,1);
datafreq = S.Frequencies;
defaultfit = rationalfit(datafreq,s21);

Use the freqresp function to calculate the response of the output of rationalfit.

respfreq = 1e9:1.5e6:4e9;
defaultresp = freqresp(defaultfit,respfreq);

Compare the original data against the frequency response of the default rational function calculated
by rationalfit.

subplot(2,1,1)
plot(datafreq,20*log10(abs(s21)),'.-')
hold on
plot(respfreq,20*log10(abs(defaultresp)))
hold off
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
defaultnpoles = numel(defaultfit.A);
defaultstr = ['Default Weight (Uses ',num2str(defaultnpoles),' poles)'];
title(defaultstr)
legend('Original Data','Default rationalfit','Location','best')
subplot(2,1,2)

7 RF Toolbox Examples

7-78

plot(datafreq,unwrap(angle(s21))*180/pi,'.-')
hold on
plot(respfreq,unwrap(angle(defaultresp))*180/pi)
hold off
xlabel('Frequency (Hz)')
ylabel('Angle (degrees)')
legend('Original Data','Default rationalfit','Location','best')

While the output of rationalfit is not awful, it does not match the regions in the data that are very
small in magnitude.

figure
plot(datafreq,20*log10(abs(s21)),'.-')
hold on
plot(respfreq,20*log10(abs(defaultresp)))
hold off
axis([2.25e9 2.65e9 -75 -30])
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
title('Accuracy at Small Magnitudes Using Default Weight')
legend('Original Data','Default rationalfit','Location','best')

 Using 'Weight' Parameter With rationalfit

7-79

Using the 'Weight' parameter to make that data relatively more important can help the accuracy of
the fit.

Analyze Output of rationalfit When Using Custom Value for 'Weight'

By using a 'Weight' of 1./abs(s21), rationalfit minimizes the relative error of the system,
instead of the absolute error of the system.

customfit = rationalfit(datafreq,s21,'Weight',1./abs(s21));

Warning: Achieved only -39.7 dB accuracy with 48 poles, not -40.0 dB. Consider specifying a larger number of poles using the 'NPoles' parameter.

customresp = freqresp(customfit,respfreq);

Compare the original data against the frequency response of the custom rational function calculated
by rationalfit.

figure
subplot(2,1,1)
plot(datafreq,20*log10(abs(s21)),'.-')
hold on
plot(respfreq,20*log10(abs(customresp)))
hold off
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
customnpoles = numel(customfit.A);
customstr = ['Weight = 1./abs(s21) (Uses ',num2str(customnpoles),' poles)'];
title(customstr)

7 RF Toolbox Examples

7-80

legend('Original Data','Custom rationalfit','Location','best')
subplot(2,1,2)
plot(datafreq,unwrap(angle(s21))*180/pi,'.-')
hold on
plot(respfreq,unwrap(angle(customresp))*180/pi)
hold off
xlabel('Frequency (Hz)')
ylabel('Angle (degrees)')
legend('Original Data','Custom rationalfit','Location','best')

The plot shows that the custom 'Weight' parameter created a better fit for the data points with
smaller magnitudes.

figure
plot(datafreq,20*log10(abs(s21)),'.-')
hold on
plot(respfreq,20*log10(abs(customresp)))
hold off
axis([2.25e9 2.65e9 -75 -30])
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
title('Accuracy at Small Magnitudes Using Custom Weight')
legend('Original Data','Custom rationalfit','Location','best')

 Using 'Weight' Parameter With rationalfit

7-81

See Also

More About
• “Using 'DelayFactor' Parameter With rationalfit” on page 7-83
• “Using Rational Object to Fit S-Parameters” on page 7-212
• “Using Rational Object to Fit S-Parameters” on page 7-212

7 RF Toolbox Examples

7-82

Using 'DelayFactor' Parameter With rationalfit
This example shows how to use the 'DelayFactor' parameter to improve the quality of the output of
rationalfit.

The rationalfit function selects a rational function that matches frequency domain data. If that
data contains a significant "time delay", which would present itself as a phase shift in the frequency
domain, then it might be very difficult to fit using a reasonable number of poles.

In these cases, when the input data contains a large negative slope (i.e. data with a large enough time
delay), we can ask rationalfit to first remove some of the delay from the data, and then find a
rational function that best fits the remaining "undelayed" data. The rationalfit function accounts
for the removed delay by storing it within the 'Delay' parameter of the output. By default,
rationalfit does not remove any delay from the data.

First, create differential transfer function data from 4-port backplane S-parameters. Next, attempt to
fit the data using the default settings of the rationalfit function. Lastly, use the 'DelayFactor'
parameter to improve the accuracy of the output of rationalfit.

Create Transfer Function

Read in the 4-port backplane S-parameter data from 'default.s4p'.

S = sparameters('default.s4p');
fourportdata = S.Parameters;
freq = S.Frequencies;
fourportZ0 = S.Impedance;

Convert 4-port single ended S-parameters into 2-port differential S-parameters

diffdata = s2sdd(fourportdata);
diffZ0 = 2*fourportZ0;

Create a transfer function from the differential 2-port data

tfdata = s2tf(diffdata,diffZ0,diffZ0,diffZ0);

Analyze Output of rationalfit When Using Default Value for 'DelayFactor'

Use the freqresp function to calculate the response of the output of rationalfit.

defaultfit = rationalfit(freq,tfdata)

Warning: Achieved only -10.2 dB accuracy with 48 poles, not -40.0 dB. Consider specifying a larger number of poles using the 'NPoles' parameter.

defaultfit =
 rfmodel.rational with properties:

 A: [48x1 double]
 C: [48x1 double]
 D: 0
 Delay: 0
 Name: 'Rational Function'

respfreq = 0:4e6:20e9;
defaultresp = freqresp(defaultfit,respfreq);

 Using 'DelayFactor' Parameter With rationalfit

7-83

Note that the 'Delay' parameter is zero (no delay removed from the data).

Plot the original data vs. the default output of rationalfit.

figure
subplot(2,1,1)
tfdataDB = 20*log10(abs(tfdata));
plot(freq,tfdataDB,'.-')
hold on
plot(respfreq,20*log10(abs(defaultresp)))
hold off
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
defaultnpoles = numel(defaultfit.A);
defstr = ['Default DelayFactor (Uses ',num2str(defaultnpoles),' poles)'];
title(defstr)
legend('Original Data','Default rationalfit','Location','best')
subplot(2,1,2)
tfdataphase = 180*unwrap(angle(tfdata))/pi;
plot(freq,tfdataphase,'.-')
hold on
plot(respfreq,180*unwrap(angle(defaultresp))/pi)
hold off
xlabel('Frequency (Hz)')
ylabel('Angle (degrees)')
legend('Original Data','Default rationalfit','Location','best')

7 RF Toolbox Examples

7-84

Note that the results when using the default settings of rationalfit are poor. Because the phase of
the original data has a very large negative slope, it may be possible to improve the accuracy of the
rational function by using the 'DelayFactor' parameter.

Analyze Output of rationalfit When Using Custom Value for 'DelayFactor'

'DelayFactor' must be set to a value between 0 and 1. Choosing which value is an exercise in trial and
error. For some data sets (those whose phase has an overall upward slope), changing the value of
'DelayFactor' will have no effect on the outcome.

Holding all other possible parameters of rationalfit constant, 0.98 is found to create a good fit.

customfit = rationalfit(freq,tfdata,'DelayFactor',0.98)

customfit =
 rfmodel.rational with properties:

 A: [31x1 double]
 C: [31x1 double]
 D: 0
 Delay: 6.5521e-09
 Name: 'Rational Function'

customresp = freqresp(customfit,respfreq);

Note that the 'Delay' parameter is not zero (rationalfit removed some delay from the data).

Plot the original data vs. the custom output of rationalfit.

subplot(2,1,1)
plot(freq,tfdataDB,'.-')
hold on
plot(respfreq,20*log10(abs(customresp)))
hold off
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
customnpoles = numel(customfit.A);
customstr = ['DelayFactor = 0.98 (Uses ',num2str(customnpoles),' poles)'];
title(customstr)
legend('Original Data','Custom rationalfit','Location','best')
subplot(2,1,2)
plot(freq,tfdataphase,'.-')
hold on
plot(respfreq,180*unwrap(angle(customresp))/pi)
hold off
xlabel('Frequency (Hz)')
ylabel('Angle (degrees)')
legend('Original Data','Custom rationalfit','Location','best')

 Using 'DelayFactor' Parameter With rationalfit

7-85

The rational function created by using a custom value for 'DelayFactor' is much more accurate, and
uses fewer poles.

See Also

More About
• “Using Rational Object to Fit S-Parameters” on page 7-212
• “Using 'NPoles' Parameter With rationalfit” on page 7-73
• “Using 'Weight' Parameter With rationalfit” on page 7-77

7 RF Toolbox Examples

7-86

Data Analysis on S-Parameters of RF Data Files
This example shows how to perform statistical analysis on a set of S-parameter data files using
magnitude, mean, and standard deviation (STD).

First, read twelve S-parameter files, where these files represent the twelve similar RF filters into the
MATLAB® workspace and plot them. Next, plot and analyze the passband response of these filters to
ensure they meet statistical norms.

Read S-Parameters from Filter Data Files

Use built-in RF Toolbox™ functions for reading a set of S-Parameter data files. For each filter plot the
S21 dB values. The names of the files are AWS_Filter_1.s2p through AWS_Filter_12.s2p. These files
represent 12 passband filters with similar specifications.

numfiles = 12;
filename = "AWS_Filter_"+(1:numfiles)+".s2p"; % Construct filenames
S = sparameters(filename(1)); % Read file #1 for initial set-up
freq = S.Frequencies; % Frequency values are the same for all files
numfreq = numel(freq); % Number of frequency points
s21_data = zeros(numfreq,numfiles); % Preallocate for speed
s21_groupdelay = zeros(numfreq,numfiles); % Preallocate for speed

% Read Touchstone files
for n = 1:numfiles
 S = sparameters(filename(n));
 s21 = rfparam(S,2,1);
 s21_data(:,n) = s21;
 s21_groupdelay(:,n) = groupdelay(S,freq,2,1);
end
s21_db = 20*log10(abs(s21_data));

figure
plot(freq/1e9,s21_db)
xlabel('Frequency (GHz)')
ylabel('Filter Response (dB)')
title('Transmission performance of 12 filters')
axis on
grid on

 Data Analysis on S-Parameters of RF Data Files

7-87

Filter Passband Visualization

In this section, find, store, and plot the S21 data from the AWS downlink band (2.11 - 2.17 GHz).

idx = (freq >= 2.11e9) & (freq <= 2.17e9);
s21_pass_data = s21_data(idx,:);
s21_pass_db = s21_db(idx,:);
freq_pass_ghz = freq(idx)/1e9; % Normalize to GHz

plot(freq_pass_ghz,s21_pass_db)
xlabel('Frequency (GHz)')
ylabel('Filter Response (dB)')
title('Passband variation of 12 filters')
axis([min(freq_pass_ghz) max(freq_pass_ghz) -1 0])
grid on

7 RF Toolbox Examples

7-88

Basic Statistical Analysis of S21 Data

To determine whether the data follows a normal distribution and if there is an outlier, perform
statistical analysis on the magnitude and group delay of all passband S21 data sets.

abs_S21_pass_freq = abs(s21_pass_data);

Calculate the mean and the STD of the magnitude of the entire passband S21 data set.

mean_abs_S21 = mean(abs_S21_pass_freq,'all')

mean_abs_S21 = 0.9289

std_abs_S21 = std(abs_S21_pass_freq(:))

std_abs_S21 = 0.0104

Calculate the mean and STD of the passband magnitude response at each frequency point. This
determines if the data follows a normal distribution.

mean_abs_S21_freq = mean(abs_S21_pass_freq,2);
std_abs_S21_freq = std(abs_S21_pass_freq,0,2);

Plot all the raw passband magnitude data as a function of frequency, as well as the upper and lower
limits defined by the basic statistical analysis.

plot(freq_pass_ghz,mean_abs_S21_freq,'m')
hold on

 Data Analysis on S-Parameters of RF Data Files

7-89

plot(freq_pass_ghz,mean_abs_S21_freq + 2*std_abs_S21_freq,'r')
plot(freq_pass_ghz,mean_abs_S21_freq - 2*std_abs_S21_freq,'k')
legend('Mean','Mean + 2*STD','Mean - 2*STD')
plot(freq_pass_ghz,abs_S21_pass_freq,'c','HandleVisibility','off')
grid on
axis([min(freq_pass_ghz) max(freq_pass_ghz) 0.9 1])
ylabel('Magnitude S21')
xlabel('Frequency (GHz)')
title('S21 (Magnitude) - Statistical Analysis')
hold off

Plot a histogram for the passband magnitude data. This determines if the upper and lower limits of
the data follow a normal distribution.

histfit(abs_S21_pass_freq(:))
grid on
axis([0.8 1 0 100])
xlabel('Magnitude S21')
ylabel('Distribution')
title('Compare filter passband response vs. a normal distribution')

7 RF Toolbox Examples

7-90

Get the groupdelay of the passband S21 data. Use inner 60% of the bandwith for statistical analysis
of the groupdelay and normalize it to 10 ns.

idx_gpd = (freq >= 2.13e9) & (freq <= 2.15e9);
freq_pass_ghz_gpd = freq(idx_gpd)/1e9; % Normalize to GHz
s21_groupdelay_pass_data = s21_groupdelay(idx_gpd,:)/10e-9; % Normalize to 10 ns

Calculate the per-frequency mean and standard deviation of the normalized group delay response. All
the data is collected into a single vector for alter analysis.

mean_grpdelay_S21 = mean(s21_groupdelay_pass_data,2);
std_grpdelay_S21 = std(s21_groupdelay_pass_data,0,2);
all_grpdelay_data = reshape(s21_groupdelay_pass_data.',numel(s21_groupdelay_pass_data),1);

Plot all the normalized passband groupdelay data as a function of frequency, including the upper and
lower limits defined by the basic statistical analysis.

plot(freq_pass_ghz_gpd,mean_grpdelay_S21,'m')
hold on
plot(freq_pass_ghz_gpd,mean_grpdelay_S21 + 2*std_grpdelay_S21,'r')
plot(freq_pass_ghz_gpd,mean_grpdelay_S21 - 2*std_grpdelay_S21,'k')
legend('Mean','Mean + 2*STD','Mean - 2*STD')
plot(freq_pass_ghz_gpd,s21_groupdelay_pass_data,'c','HandleVisibility','off')
grid on
xlim([min(freq_pass_ghz_gpd) max(freq_pass_ghz_gpd)])
ylabel('Normalized group delay S21')
xlabel('Frequency (GHz)')

 Data Analysis on S-Parameters of RF Data Files

7-91

title('S21 (Normalized group delay) - Statistical Analysis')
hold off

Plot a histogram for the normalized passband group delay data. This determines if the upper and
lower limits of the data follow a uniform distribution.

histogram(all_grpdelay_data,35)
grid on
xlabel('Group delay S21 (seconds)')
ylabel('Distribution')
title('Histogram of the normalized group delay')

7 RF Toolbox Examples

7-92

Analysis of Variance (ANOVA) of Data

Perform ANOVA on the magnitude of the passband S21 data.

anova1(abs_S21_pass_freq.',freq_pass_ghz);

ylabel('Magnitude S21')
xlabel('Frequency (GHz)')
ax1 = gca;
ax1.XTick = 0.5:10:120.5;
ax1.XTickLabel = {2.11,'',2.12,'',2.13,'',2.14,'',2.15,'',2.16,'',2.17};
title('Analysis of variance (ANOVA) of passband S21 magnitude response')
grid on

 Data Analysis on S-Parameters of RF Data Files

7-93

Perform ANOVA on the normalized groupdelay passband S21 data.

anova1((s21_groupdelay_pass_data).',freq_pass_ghz_gpd);

ylabel('Normalized group delay S21')
xlabel('Frequency (GHz)')
ax2 = gca;
ax2.XTick = 0.5:4:40.5;
ax2.XTickLabel = {2.13,2.132,2.134,2.136,2.138,2.14,2.142,2.144,2.146,2.148,2.15};
title('Analysis of variance (ANOVA) of passband S21 groupdelay (normalized)')
grid on

7 RF Toolbox Examples

7-94

See Also

More About
• “Bandpass Filter Response using RFCKT Objects” on page 7-36
• “Bandpass Filter Response” on page 7-24

 Data Analysis on S-Parameters of RF Data Files

7-95

Write S2P Touchstone® Files
This example shows how to write the data in a circuit object created in the MATLAB® workspace
into an industry-standard data file, Touchstone®. You can use these files in third-party tools.

To write a touchstone file, in this example an RLGC transmission line object is created and analyzed
in the frequency domain. This analyzed results are written into a Touchstone file and the data is
compared with the original result.

Create RF Circuit Object to Represent an RLCG Transmission Line

Create a txlineRLCGLine object to represent a RLCG transmission line. This example uses Name-
Value pairs to implement the parameters in the RLCG transmission line shown in figure 1 [1].

Figure 1: RLCG transmission line.

ckt1 = txlineRLCGLine('R',100,'L',80e-9,'C',200e-12,'G',1.6);

Clone Circuit Object

Use the clone function to make a copy of the transmission line object.

ckt2 = clone(ckt1)

ckt2 =
 txlineRLCGLine: RLCGLine element

 Name: 'RLCGLine'
 Frequency: 1.0000e+09
 R: 100
 L: 8.0000e-08
 C: 2.0000e-10
 G: 1.6000
 IntpType: 'Linear'
 LineLength: 0.0100
 Termination: 'NotApplicable'
 StubMode: 'NotAStub'

7 RF Toolbox Examples

7-96

 NumPorts: 2
 Terminals: {'p1+' 'p2+' 'p1-' 'p2-'}

Cascade Two Circuit Objects

Use the circuit object to cascade the two transmission lines.

ckt = circuit([ckt1,ckt2]);

Analyze and Plot S-Parameter Data

Use the sparameters object to analyze the cascadeed transmission line in the frequency domain.

freq = linspace(0,10e9);
ckt_sparameters = sparameters(ckt,freq);

Use the smithplot method to plot the object's S11 on a Smith chart®.

figure
smithplot(ckt_sparameters,[1,1],'LegendLabels','S11 Original')

Write Data to S2P File

Use the rfwrite function to write the data to a file.

workingdir = tempname;
mkdir(workingdir);

 Write S2P Touchstone® Files

7-97

filename = fullfile(workingdir,'myrlcg.s2p');
if exist(filename,'file')
 delete(filename)
end
rfwrite(ckt_sparameters,filename);

Compare Data

Read the data from the file myrlcg.s2p into a new sparameters object and plot input reflection
coefficient, S11 on a Smith chart. Visually compare the 'S11 original' and 'S11 from S2P' to confirm
that the data matches.

compare_ckt = sparameters(filename);
figure
smithplot(compare_ckt,[1,1],'LegendLabels','S11 from S2P')

[1] M. Steer, "Transmission Lines," in Microwave and RF Design: Transmission Lines. vol. 2, 3rd ed.
Raleigh, North Carolina, US: North Carolina State University, 2019, ch. 2, sec. 2, pp.58.

See Also

More About
• “Visualize Mixer Spurs” on page 7-99
• “Finding Free IF Bandwidths” on page 7-105

7 RF Toolbox Examples

7-98

Visualize Mixer Spurs
This example shows how to create an rfckt.mixer object and plot the mixer spurs of that object.

Mixers are non-linear devices used in RF systems. They are typically used to convert signals from one
frequency to another. In addition to the desired output frequency, mixers also produce
intermodulation products (also called mixer spurs), which are unwanted side effects of their
nonlinearity. The output of the mixer occurs at the frequencies:

Fout(N, M) = NFin + MFLO

where:

• Fin is the input frequency.
• FLO is the local oscillator (LO) frequency.
• N is a nonnegative integer.
• M is an integer.

Only one of these output frequencies is the desired tone. For example, in a downconversion mixer (i.e.
Fin = FRF) with a low-side LO (i.e. FRF > FLO), the case N = 1, M = − 1 represents the desired output
tone. That is:

Fout(1, − 1) = FIF = NFin + MFLO = FRF − FLO

All other combinations of N and M represent the spurious intermodulation products.

Intermodulation tables (IMTs) are often used in system-level modeling of mixers. This example first
examines the IMT of a mixer. Then the example reads an .s2d format file containing an IMT, and
plots the output power at each output frequency, including the desired signal and the unwanted
spurs. The example also creates a cascaded circuit which contains a mixer with IMT followed by a
filter, whose purpose is to mitigate the spurs, and plots the output power before and after mitigation.

For more information on IMTs, see the OpenIF example “Finding Free IF Bandwidths” on page 7-105.

Create Mixer Object from Data File

Create an rfckt.mixer object to represent the downconverting mixer that is specified in the file,
samplespur1.s2d. The mixer is characterized by S-parameters, spot noise and IMT. These data are
stored in the NetworkData, NoiseData and MixerSpurData properties of the rfckt object,
respectively.

Mixer = rfckt.mixer('FLO', 1.7e9); % Flo = 1.7GHz
read(Mixer,'samplespur1.s2d');
disp(Mixer)

 rfckt.mixer with properties:

 MixerSpurData: [1x1 rfdata.mixerspur]
 MixerType: 'Downconverter'
 FLO: 1.7000e+09
 FreqOffset: []
 PhaseNoiseLevel: []
 NoiseData: [1x1 rfdata.noise]
 NonlinearData: Inf

 Visualize Mixer Spurs

7-99

 IntpType: 'Linear'
 NetworkData: [1x1 rfdata.network]
 nPort: 2
 AnalyzedResult: [1x1 rfdata.data]
 Name: 'Mixer'

IMT = Mixer.MixerSpurData.data

IMT = 16×16

 99 26 35 39 50 41 53 49 51 42 62 51 60 47 77 50
 24 0 35 13 40 24 45 28 49 33 53 42 60 47 63 99
 73 73 74 70 71 64 69 64 69 62 74 62 72 60 99 99
 67 64 69 50 77 47 74 44 74 47 75 44 70 99 99 99
 86 90 86 88 88 85 86 85 90 85 85 85 99 99 99 99
 90 80 90 71 90 68 90 65 88 65 85 99 99 99 99 99
 90 90 90 90 90 90 90 90 90 90 99 99 99 99 99 99
 90 90 90 90 90 87 90 90 90 99 99 99 99 99 99 99
 99 95 99 95 99 95 99 95 99 99 99 99 99 99 99 99
 90 95 90 90 90 99 90 99 99 99 99 99 99 99 99 99
 ⋮

Plot Mixer Output Signal and Spurs

Use the plot method of the rfckt object to plot the power of the desired output signal and the
spurs. The second input argument must be the string 'MIXERSPUR'. The third input argument must
be the index of the circuit for which to plot output power data. The rfckt.mixer object only
contains one circuit (the mixer), so index 0 corresponds to the mixer input and index 1 corresponds to
the mixer output.

CktIndex = 1; % Plot the output only
Pin = -10; % Input power is -10dBm
Fin = 2.1e9; % Input frequency is 2.1GHz
figure
plot(Mixer,'MIXERSPUR',CktIndex,Pin,Fin);

7 RF Toolbox Examples

7-100

Use Data Cursor

Run the cursor over the plot to get the frequency and power level of each signal and spur.

 Visualize Mixer Spurs

7-101

Create Cascaded Circuit

Create an amplifier object for LNA, mixer, and LC Bandpass Tee objects. Then build the cascade
shown in the following figure:

Figure 1: Cascaded Circuit

FirstCkt = rfckt.amplifier('NetworkData', ...
 rfdata.network('Type','S','Freq',2.1e9,'Data',[0,0;10,0]), ...
 'NoiseData',0,'NonlinearData',Inf); % 20dB LNA
SecondCkt = copy(Mixer); % Mixer with IMT table
ThirdCkt = rfckt.lcbandpasstee('L',[97.21 3.66 97.21]*1.0e-9, ...
 'C',[1.63 43.25 1.63]*1.0e-12); % LC Bandpass filter
CascadedCkt = rfckt.cascade('Ckts',{FirstCkt,SecondCkt,ThirdCkt});

7 RF Toolbox Examples

7-102

Plot Output Signal and Spurs of LC filter in Cascade

Use the plot method of the rfckt object to plot the power of the desired output signal and the
spurs. The third input argument is 3, which directs the toolbox to plot the power at the output of the
third component of the cascade (the LC filter).

CktIndex = 3; % Plot the output signal and spurs of the LC filter,
 % which is the 3rd circuit in the cascade
Pin = -30; % Input power is -30dBm
Fin = 2.1e9; % Input frequency is 2.1GHz
plot(CascadedCkt,'MIXERSPUR',CktIndex,Pin,Fin)

Plot Cascade Signal and Spurs in 3D

Use the plot method of the rfckt object with a third input argument of 'all' to plot the input
power and the output power after each circuit component in the cascade. Circuit index 0 corresponds
to the input of the cascade. Circuit index 1 corresponds to the output of the LNA. Circuit index 2
corresponds to the output of the mixer, which was shown in the previous plot. Circuit index 3
corresponds to the output of the LC Bandpass Tee filter.

CktIndex = 'all'; % Plot the input signal, the output signal, and the
 % spurs of the three circuits in the cascade: FirstCkt,
 % SecondCkt and ThirdCkt
Pin = -30; % Input power is -30dBm
Fin = 2.1e9; % Input frequency is 2.1GHz
plot(CascadedCkt,'MIXERSPUR',CktIndex,Pin,Fin)
view([68.5 26])

 Visualize Mixer Spurs

7-103

See Also

More About
• “Finding Free IF Bandwidths” on page 7-105
• “Write S2P Touchstone® Files” on page 7-96

7 RF Toolbox Examples

7-104

Finding Free IF Bandwidths
This example shows how to select an Intermediate Frequency (IF) that is free from any
intermodulation distortion. First, you create an OpenIF object and specify whether you are designing
a transmitter or receiver. Second, you use the addMixer function to define the properties of each
mixer as well as the specific Radio Frequency (RF) it interacts with. Lastly, you view the results using
the functions report and show.

Background Knowledge (Mixer Spurs)

When converting from RF to IF (receiver) or from IF to RF (transmitter), a mixer is used.
Unfortunately, mixers are nonlinear and their outputs contain energy at unwanted frequencies (we
call these unwanted outputs "spurs"). The OpenIF tool helps you to select an IF which avoids having
these spurious mixer outputs interfere with the mixer output. The output of the mixer is
characterized by the following equation:

Fout(N, M) = NFin + MFLO

where:

• Fin is the input frequency.
• FLO is the local oscillator (LO) frequency.
• N is a nonnegative integer.
• M is an integer.

Only one of these output frequencies is the desired tone. For example, in a downconversion mixer (i.e.
Fin = FRF) with a low-side LO (i.e. FRF > FLO), the case N = 1, M = − 1 represents the desired output
tone. That is:

Fout(1, − 1) = FIF = NFin + MFLO = FRF − FLO

All other combinations of N and M represent the spurious intermodulation products. To characterize
these intermodulation products, an Intermodulation Table (IMT) is used.

Background Knowledge (Intermodulation Tables)

The IMT provides information on the amount of power generated at each intermodulation product
frequency. For accurate mixer spurs analysis results, the IMT should be built from simulated or
measured data at the desired input signal and local oscillator frequency and power conditions.
Extrapolation to other conditions will lead to inaccuracies.

Here is the IMT of a downconverting mixer with a low side LO, measured at Fin = FRF = 2 . 1 GHz,
Pin = PRF = − 10 dBm, FLO = 1 . 7 GHz, and PLO = 7 dBm.

 ! Element (N,M) gives power of |N*Fin+M*Flo| in dBc
 ! Top indices give M =
 ! Left-hand indices give N =
 %0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0% 99 26 35 39 50 41 53 49 51 42 62 51 60 47 77 50
 1% 24 0 35 13 40 24 45 28 49 33 53 42 60 47 63
 2% 73 73 74 70 71 64 69 64 69 62 74 62 72 60
 3% 67 64 69 50 77 47 74 44 74 47 75 44 70
 4% 86 90 86 88 88 85 86 85 90 85 85 85

 Finding Free IF Bandwidths

7-105

 5% 90 80 90 71 90 68 90 65 88 65 85
 6% 90 90 90 90 90 90 90 90 90 90
 7% 90 90 90 90 90 87 90 90 90
 8% 99 95 99 95 99 95 99 95
 9% 90 95 90 90 90 99 90
10% 99 99 99 99 99 99
11% 90 99 90 95 90
12% 99 99 99 99
13% 90 99 90
14% 99 99
15% 99

Notice that it is a convention in industry-standard IMTs to assume symmetry, namely:

Pout(N, M) = Pout(N, −M)

and RF Toolbox™ software follows this convention.

If the measurement reveals that in fact the mixer is asymmetric, i.e.:

Pout(N, M) ≠ Pout(N, −M)

there is no way of accommodating this information in an industry-standard IMT. In this situation, the
most common convention is to build an approximate model by placing the value:

max Pout(N, M), Pout(N, −M)

at position N, M.

Thus industry-standard IMTs in general and RF Toolbox in particular will over-estimate the power of
one spur in each pair of asymmetric spurs.

In the IMT, a 0 always appears in the table at the position N = 1, M = 1, which represents both the
desired signal and its symmetric image pair. All other entries are specified in dBc below the power of
the mixer output at the desired frequency. (In the unlikely case of a spur being above the power of the
desired, it will appear as a negative number, the magnitude of which is the spur power in dBc above
the desired.)

For example, in the IMT above, at row N = 1, column M = 3, the IMT value is 13. RF Toolbox will
place a pair of symmetric IM products at:

Fout(1, 3) = Fin + 3FLO

Fout(1, − 3) = Fin− 3FLO

each with a power level of -13 dBc. The absolute power of a spur in dBm is calculated by subtracting
the IMT dBc value from the output power (also in dBm) of the desired tone.

By convention, the special value of 99 means the tone at that index is negligible.

For more information on intermodulation tables, see [1] on page 7-0 .

Design Requirements

Find a spur-free IF for a receiver. The receiver must be able to downconvert from three separate RF
bands to the same (shared) IF. To find an IF center frequency that is spur-free for all three RF bands,

7 RF Toolbox Examples

7-106

your requirements must specify the RF Center Frequency, the RF Bandwidth, and the IF Bandwidth
that goes with that particular RF:

% RF band 1
RFCF1 = 2400e6; % 2.4 GHz
RFBW1 = 200e6; % 200 MHz
IFBW1 = 20e6; % 20 MHz

% RF band 2
RFCF2 = 3700e6; % 3.7 GHz
RFBW2 = 250e6; % 250 MHz
IFBW2 = 20e6; % 20 MHz

% RF band 3
RFCF3 = 5400e6; % 5.4 GHz
RFBW3 = 250e6; % 250 MHz
IFBW3 = 50e6; % 50 MHz

Next we must have an IMT measured for each RF band. Assume you have tested and measured the
mixers you plan to use with the following results:

IMT1 = [99 0 21 17 26;
 11 0 29 29 63;
 60 48 70 86 41;
 90 89 74 68 87;
 99 99 95 99 99];

IMT2 = [99 1 9 12 15;
 20 0 26 31 48;
 55 70 51 70 53;
 85 90 60 70 94;
 96 95 94 93 92];

IMT3 = [99 2 11 15 16;
 27 0 16 41 55;
 25 61 66 65 47;
 92 83 66 77 88;
 97 94 91 92 99];

Find Spur-Free frequencies using the OpenIF object

Create the object using the OpenIF function. Specify you are designing a receiver by setting the
'IFLocation' property to 'MixerOutput'.

h = OpenIF('IFLocation', 'MixerOutput');

Use the addMixer method to input the information for each RF band. Here low-side injection is
assumed for each mixer, but high-side injection could be tried later.

addMixer(h,IMT1, RFCF1, RFBW1, 'low', IFBW1);
addMixer(h,IMT2, RFCF2, RFBW2, 'low', IFBW2);
addMixer(h,IMT3, RFCF3, RFBW3, 'low', IFBW3);

View the results textually using the report method.

report(h);

 Finding Free IF Bandwidths

7-107

 Intermediate Frequency (IF) Planner
 IF Location: MixerOutput

 -- MIXER 1 --
 RF Center Frequency: 2.4 GHz
 RF Bandwidth: 200 MHz
 IF Bandwidth: 20 MHz
 MixerType: low
 Intermodulation Table: 99 0 21 17 26
 11 0 29 29 63
 60 48 70 86 41
 90 89 74 68 87
 99 99 95 99 99

 -- MIXER 2 --
 RF Center Frequency: 3.7 GHz
 RF Bandwidth: 250 MHz
 IF Bandwidth: 20 MHz
 MixerType: low
 Intermodulation Table: 99 1 9 12 15
 20 0 26 31 48
 55 70 51 70 53
 85 90 60 70 94
 96 95 94 93 92

 -- MIXER 3 --
 RF Center Frequency: 5.4 GHz
 RF Bandwidth: 250 MHz
 IF Bandwidth: 50 MHz
 MixerType: low
 Intermodulation Table: 99 2 11 15 16
 27 0 16 41 55
 25 61 66 65 47
 92 83 66 77 88
 97 94 91 92 99

 There are no spur-free zones.
 The best attainable spur-free zone has a SpurFloor of 87.

View the results graphically using the show method.

figure;
show(h);

7 RF Toolbox Examples

7-108

Interpreting the Graphical Results

The figure created by the show method displays all relevant spurious frequency ranges as colored
horizontal rectangles. If there any spur-free zones (there may not be) it will be displayed as vertical
green rectangle.

In this example, as we can see in the figure, there are no spur-free zones. The legend in the upper
right-hand corner tells us which color each Mixer is associated with. If we wish more detailed
information about a spurious region, we can click on one of the rectangles:

 Finding Free IF Bandwidths

7-109

If we wish to find a spur-free zone, we will have to adjust some of the parameters of the setup.

Adjusting a Mixer Property to find Spur-Free Zones

In the current setup, there are no spur-free zones available. We will need to adjust some of the setup
parameters in order to find a spur-free zone. The values laid out in the design requirements (RF
Bandwidth, RF Center Frequency, and IF Bandwidth) cannot be changed. However, some parameters
(such as altering low- or high-side injection) are design decisions. We can see if changing the first
mixer to high-side injection will open up a spur-free zone:

h.Mixers(1).MixingType = 'high';
figure;
show(h);

7 RF Toolbox Examples

7-110

Adjusting the SpurFloor to find Spur-Free Zones

If we wish to use low-side injection in all of the mixers, we must find acceptable spur-free zones by
adjusting other parameters. Here we reset the OpenIF object to all low-side injection, and re-plot the
results:

h.Mixers(1).MixingType = 'low';
figure;
show(h);

 Finding Free IF Bandwidths

7-111

We notice there is a section around 500 MHz where there is a opening all the way down to roughly
-85 dBc. We can find that zone by adjusting the SpurFloor property:

h.SpurFloor = 85;
show(h);

7 RF Toolbox Examples

7-112

References

[1] Daniel Faria, Lawrence Dunleavy, and Terje Svensen. "The Use of Intermodulation Tables for
Mixer Simulations," Microwave Journal, Vol. 45, No. 4, December 2002, p. 60.

See Also

More About
• “Visualize Mixer Spurs” on page 7-99
• “Write S2P Touchstone® Files” on page 7-96

 Finding Free IF Bandwidths

7-113

De-Embedding S-Parameters
This example shows you how to extract the S-parameters of a Device Under Test (DUT). First, read a
Touchstone® file into a sparameters object, second, calculate the S-parameters for the left and
right pads, third, de-embed the S-parameters using the deembedsparams function and finally display
the results.

This example uses the S-parameter data in the file samplebjt2.s2p that was collected from a
bipolar transistor in a fixture with a bond wire (series inductance of 1 nH) connected to a bond pad
(shunt capacitance of 100 fF) on the input, and a bond pad (shunt capacitance of 100 fF) connected to
a bond wire (series inductance of 1 nH) on the output, see Figure 1.

Figure 1: Device under test (DUT) and the test fixture.

This example will also show how to remove the effects of the fixture in order to extract the S-
parameters of the DUT.

Read Measured S-Parameters

Create a sparameters object for the measured S-parameters, by reading the Touchstone® data file,
samplebjt2.s2p.

S_measuredBJT = sparameters('samplebjt2.s2p');
freq = S_measuredBJT.Frequencies;

Calculate S-Parameters for Left Pad

Create a two port circuit object representing the left pad, containing a series inductor and a
shunt capacitor. Then calculate the S-parameters using the frequencies from samplebjt2.s2p.

leftpad = circuit('left');
add(leftpad,[1 2],inductor(1e-9));
add(leftpad,[2 3],capacitor(100e-15));
setports(leftpad,[1 3],[2 3]);
S_leftpad = sparameters(leftpad,freq);

Calculate S-Parameters for Right Pad

Create a two port circuit object representing the right pad, containing a series inductor and
shunt capacitor. Then, calculate the S-parameters using the frequencies from samplebjt2.s2p.

rightpad = circuit('right');
add(rightpad,[1 3],capacitor(100e-15));
add(rightpad,[1 2],inductor(1e-9));
setports(rightpad,[1 3],[2 3]);
S_rightpad = sparameters(rightpad,freq);

7 RF Toolbox Examples

7-114

De-Embed S-Parameters

De-embed the S-parameters of the DUT from the measured S-parameters by removing the effects of
input and output pads (deembedsparams).

S_DUT = deembedsparams(S_measuredBJT,S_leftpad,S_rightpad);

Plot Measured and De-Embedded S11 Parameters on Z Smith® Chart

Use the smithplot function to plot the measured and de-embedded S11 parameters.

figure
hs = smithplot(S_measuredBJT,1,1);
hold on;
smithplot(S_DUT,1,1)
hs.ColorOrder = [1 0 0; 0 0 1];
hs.LegendLabels = {'Measured S11','De-Embedded S11'};

Plot Measured and De-Embedded S22 Parameters on Z Smith Chart

Use the smithplot function to plot the measured and de-embedded S22 parameters.

figure
hold off;
smithplot(S_measuredBJT,2,2)
hold on;
smithplot(S_DUT,2,2)
hs = smithplot('gco');

 De-Embedding S-Parameters

7-115

hs.ColorOrder = [1 0 0; 0 0 1];
hs.LegendLabels = {'Measured S22','De-Embedded S22'};

Plot Measured and De-Embedded S21 Parameters in Decibels

Use the rfplot function to plot the measured and de-embedded S21 parameters.

figure
hold off;
h1 = rfplot(S_measuredBJT,2,1);
hold on;
h2 = rfplot(S_DUT,2,1);
legend([h1,h2],{'Measured S_{21}','De-Embedded S_{21}'});

7 RF Toolbox Examples

7-116

See Also

More About
• “Extract S-Parameters from Circuit” on page 7-234
• “Extract S-Parameters from Mutual Inductor” on page 7-238
• “Bisect S-Parameters of Cascaded Probes” on page 7-118

 De-Embedding S-Parameters

7-117

Bisect S-Parameters of Cascaded Probes
This example shows a how to separate the S-parameters of two identical, passive, symmetric probes
connected in a cascade.

Introduction

Consider a DUT (device under test) connected to two probes. In order to de-embed the S-parameters
of DUT, you need to know the S-parameters of each individual probe. For accurate S-parameters of
the two probes, the calibration is done in the lab using SOLT (short, open, load, and thru) or TRL
(thru, reflect, line) measurements. However, if you assume the probes are identical and symmetric,
then you can approximate S-parameters quickly using the procedure sketched here.

The file connectedprobes.s2p contains the S-parameter data when the probes are connected
directly to each other.

ABCD-parameters

This example uses ABCD-parameters to bisect measured S-parameter data into the data for each
individual probe.

When you cascade two networks, you can calculate the ABCD-parameters of the combined network
by matrix multiplying the ABCD-parameters of the two individual networks.

Figure 1: Main network and network with two symmetric probes connected in a cascade

A B
C D

=
A1 B1
C1 D1

A2 B2
C2 D2

If,
A1 B1
C1 D1

=
A2 B2
C2 D2

, then,
A B
C D

=
A1 B1
C1 D1

2

From the above equation, you can find the ABCD-parameters of the two individual probes by taking
the matrix square root of the ABCD-parameters of main network.

Since both probes are identical, you can calculate the S-parameters of either one of the probes.

Extract Required S-Parameter Data from Given Touchstone file

Create an sparameters object from the Touchstone® data file connectedprobes.s2p.

filename = 'connectedprobes.s2p';
S = sparameters(filename);
numports = S.NumPorts;

7 RF Toolbox Examples

7-118

freq = S.Frequencies;
numfreq = numel(freq);
z0 = S.Impedance;

Calculate S-Parameter Data of Individual Probe

Create a zero matrix to store the ABCD-parameter data of the probe.

abcd_probe_data = zeros(numports,numports,numfreq);

To calculate S-Parameters of the probe, you need to know the S-parameters at every frequency it
operates. Convert the S-parameters extracted from connectedprobes.s2p to ABCD-parameters.
Then calculate the matrix square root of ABCD-parameters using sqrtm function to get the ABCD-
parameters of the probe. Convert these ABCD-parameters of the probe to S-parameters.

ABCD = abcdparameters(S);
for n = 1:numfreq
 abcd_meas = ABCD.Parameters(:,:,n);
 abcd_probe_data(:,:,n) = sqrtm(abcd_meas);
end
ABCD_probe = abcdparameters(abcd_probe_data,freq);

Create an S-parameter object from the calculated S-parameter data of the probe.

S_probe = sparameters(ABCD_probe,z0);

Compare Calculated S-Parameters with Expected S-Parameters

For this example, connectedprobes.s2p gives the S-Parameter data of this network.

Figure 2: Network derived from connectedprobes.s2p

Split the above network into two identical networks, probe1 and probe2. The S-parameters of these
probes represent the expected result.

 Bisect S-Parameters of Cascaded Probes

7-119

Figure 3: Identical Networks

Create probe1 using circuit, resistor, and capacitor objects from the RF Toolbox.

R1 = 1;
C1 = 1;
R2 = 1;
ckt = circuit('probe1');
add(ckt,[1 2],resistor(R1))
add(ckt,[2 4],capacitor(C1))
add(ckt,[2 3],resistor(R2))

Calculate the expected S-parameters of probe 1.

setports(ckt,[1 4],[3 4])
S_exp = sparameters(ckt,freq,z0);

Plot and compare the expected S-parameters from probe1 and those calculated using ABCD-
parameters and compare.

rfplot(S_exp)
hold on
rfplot(S_probe,'--')
hold off
text(0.02,-5,{'Solid: Expected','Dashed: Computed'})

7 RF Toolbox Examples

7-120

Compare Cascaded S-Parameters of Probe1 with S-Parameters of Combined Network

Cascade S-parameters of probe1 with itself using cascadesparams function and create an S-
parameter object with cascaded S-parameters.

S_combined = cascadesparams(S_probe,S_probe);

Plot and compare S-parameters from connectedprobes.s2p and those calculated from combined
probe1.

figure
rfplot(S)
hold on
rfplot(S_combined,'--')
hold off
text(0.02,-5,{'Solid: Expected','Dashed: Computed'})

Limitations

The procedure shown here cannot replace traditional calibration. We include it as an example of
using RF Toolbox™ and MATLAB™ to manipulate network parameters mathematically.

There are some limitations to using this procedure.

• There is no guaranteed solution. Some matrices do not have a square root.

 Bisect S-Parameters of Cascaded Probes

7-121

• The solution may not be unique. Often, there are two or more viable matrix square roots.

See Also

More About
• “De-Embedding S-Parameters” on page 7-114
• “Extract S-Parameters from Circuit” on page 7-234
• “Extract S-Parameters from Mutual Inductor” on page 7-238

7 RF Toolbox Examples

7-122

Designing Matching Networks for Low Noise Amplifiers
This example shows how to verify the design of input and output matching networks for a Low Noise
Amplifier (LNA) using gain and noise figure plot.

In wireless communications, receivers need to be able to detect and amplify incoming low-power
signals without adding much noise. Therefore, an LNA is often used as the first stage of these
receivers. To design an LNA, this example uses the available gain design technique, which involves
selecting an appropriate matching network that provides a suitable compromise between gain and
noise.

In this example, to design matching networks for an LNA, the rfckt.amplifier object and the
analyze method are used to examine the transducer power gains, the available power gain, and the
maximum available power gain. The method circle is used to determine optimal source reflection
coiefficent, GammaS and the function fzero is used in amplifier stabilization.

LNA Design Specifications

The LNA design specifications are as follows:

• Frequency range: 5.10 - 5.30 GHz
• Noise Figure <= 2.2 dB
• Transducer Gain > 11 dB
• Operating between 50-ohm terminations

Create rfckt.amplifier Object and Examine Amplifier Power Gains and Noise Figure

Create an rfckt.amplifier object to represent the amplifier that is specified in the file,
'samplelna1.s2p'. Analyze the amplifier using the analyze function the amplifier in the frequency
range from 2 - 10 GHz.

unmatched_amp = read(rfckt.amplifier, 'samplelna1.s2p');
analyze(unmatched_amp, 2e9:50e6:10e9);

Plot the transducer power gain (Gt), the available power gain (Ga) and the maximum available power
gain (Gmag).

figure
plot(unmatched_amp,'Gmag','Ga','Gt','dB')

 Designing Matching Networks for Low Noise Amplifiers

7-123

Examine the power gains at 5.2 GHz in order to design the input and output matching networks 5.2
GHz. Without the input and output matching networks, the transducer power gain at 5.2 GHz is about
7.2 dB. This is below the gain requirement of 11 dB in the design specifications and less than the
available power gain. This amplifier is also potentially unstable at 5.2 GHz, since the maximum
available gain does not exist at 5.2 GHz.

Plot the measured minimum noise figure (Fmin) and the noise figure (NF) calculated when there is no
input matching network. Specify an x-axis range of 4.9 GHz to 6 GHz, where the minimum noise
figure is measured.

plot(unmatched_amp,'Fmin','NF','dB')
axis([4.9 6 1.5 4])
legend('Location','NorthWest')

7 RF Toolbox Examples

7-124

In the absence of an input matching network, the noise figure is between 5.10 - 5.30 GHz which is
above the noise figure requirement of 2.2 dB in the specification.

Plot Gain, Noise Figure, and Stability Circles

Both the available gain and the noise figure are functions of the source reflection coefficient,
GammaS. To select an appropriate GammaS that provides a suitable compromise between gain and
noise, use the circle method of the rfckt.amplifier object to place the constant available gain
and the constant noise figure circles on the Smith chart. As mentioned earlier, the amplifier is
potentially unstable at 5.2 GHz. Therefore, the following circle command also places the input and
output stability circles on the Smith chart.

fc = 5.2e9;
hsm = smithplot;
circle(unmatched_amp,fc,'Stab','In','Stab','Out','Ga',10:2:20, ...
 'NF',1.8:0.2:3,hsm);
legend('Location','SouthEast')

 Designing Matching Networks for Low Noise Amplifiers

7-125

Enable the data cursor and click on the constant available gain circle. The data tip displays the
following data:

• Available power gain (Ga)
• Noise figure (NF)
• Source reflection coefficient (GammaS)
• Output reflection coefficient (GammaOut)
• Normalized source impedance (ZS)

Ga, NF, GammaOut and ZS are all functions of the source reflection coefficient, GammaS. GammaS is the
complex number that corresponds to the location of the data cursor. A star ('*') and a circle-in-dashed-
line will also appear on the Smith chart. The star represents the matching load reflection coefficient
(GammaL) that is the complex conjugate of GammaOut. The gain is maximized when GammaL is the
complex conjugate of GammaOut. The circle-in-dashed-line represents the trajectory of the matching
GammaL when the data cursor moves on a constant available gain or noise figure circle.

7 RF Toolbox Examples

7-126

Because both the S11 and S22 parameters of the amplifier are less than unity in magnitude, both the
input and output stable region contain the center of the Smith chart. In order to make the amplifier
stable, GammaS must be in the input stable region and the matching GammaL must be in the output
stable region. The output stable region is shaded in the above figure. However, when a GammaS that
gives a suitable compromise between gain and noise is found, the matching GammaL always falls
outside the output stable region. This makes amplifier stabilization necessary.

Amplifier Stabilization

One way to stabilize an amplifier is to cascade a shunt resistor at the output of the amplifier.
However, this approach will also reduce gain and add noise. At the end of the example, you will notice
that the overall gain and noise still met the requirement.

To find the maximum shunt resistor value that makes the amplifier unconditionally stable, use the
fzero function to find the resistor value that makes stability MU equal to 1. The fzero function
always tries to achieve a value of zero for the objective function, so the objective function should
return MU-1.

type('lna_match_stabilization_helper.m')

function mu_minus_1 = lna_match_stabilization_helper(propval, fc, ckt, element, propname)
%LNA_MATCH_STABILIZATION_HELPER Return Stability MU-1.
% MU_MINUS_1 = LNA_MATCH_STABILIZATION_HELPER(PROPVALUE, FC, CKT,
% ELEMENT, PROPNAME) returns stability parameter MU-1 of a circuit, CKT
% when the property called PROPNAME of an element, ELEMENT is set to
% PROPVAL.
%

 Designing Matching Networks for Low Noise Amplifiers

7-127

% LNA_MATCH_STABILIZATION_HELPER is a helper function of RF
% Toolbox demo: Designing Matching Networks (Part 1: Networks with an LNA
% and Lumped Elements).

% Copyright 2007-2008 The MathWorks, Inc.

set(element, propname, propval)
analyze(ckt, fc);
mu_minus_1 = stabilitymu(ckt.AnalyzedResult.S_Parameters) - 1;

Compute the parameters for objective function and pass the objective function to fzero to get the
maximum shunt resistor value.

stab_amp = rfckt.cascade('ckts', {unmatched_amp, rfckt.shuntrlc});
R1 = fzero(@(R1) lna_match_stabilization_helper(R1,fc,stab_amp,stab_amp.Ckts{2},'R'),[1 1e5])

R1 = 118.6213

Find GammaS and GammaL

Cascade a 118-ohm resistor at the output of the amplifier and analyze the cascaded network. Place
the new constant available gain and the constant noise figure circles on the Smith chart.

shunt_r = rfckt.shuntrlc('R',118);
stab_amp = rfckt.cascade('ckts',{unmatched_amp,shunt_r});
analyze(stab_amp,fc);
hsm = smithplot;
circle(stab_amp,fc,'Ga',10:17,'NF',1.80:0.2:3,hsm)
legend('Location','SouthEast')

Use the data cursor to locate a GammaS. You can find that there is a suitable compromise between
gain and noise.

7 RF Toolbox Examples

7-128

The example is designined to select a GammaS that gives a gain of 14 dB and noise figure of 1.84 dB.
Compute the matching GammaL, which is the complex conjugate of GammaOut on the data tip.

GammaS = 0.67*exp(1j*153.6*pi/180)

GammaS = -0.6001 + 0.2979i

Compute the normalized source impedance.

Zs = gamma2z(GammaS,1)

Zs = 0.2080 + 0.2249i

Compute the matching GammaL that is equal to the complex conjugate of GammaOut.

GammaL = 0.7363*exp(1j*120.1*pi/180)

GammaL = -0.3693 + 0.6370i

Compute the normalized load impedance.

Zl = gamma2z(GammaL,1)

Zl = 0.2008 + 0.5586i

Design Input Matching Network Using GammaS

In this example, the lumped LC elements are used to build the input and output matching networks as
follows:

 Designing Matching Networks for Low Noise Amplifiers

7-129

The input matching network consists of one shunt capacitor, Cin, and one series inductor, Lin. Use
the Smith chart and the data cursor to find component values. To do this, start by plotting the
constant conductance circle that crosses the center of the Smith chart and the constant resistance
circle that crosses GammaS.

hsm = smithplot;
circle(stab_amp,fc,'G',1,'R',real(Zs),hsm);
hsm.GridType = 'YZ';
hold all
plot(GammaS,'k.','MarkerSize',16)
text(real(GammaS)+0.05,imag(GammaS)-0.05,'\Gamma_{S}','FontSize', 12, ...
 'FontUnits','normalized')
plot(0,0,'k.','MarkerSize',16)
hold off

Then, find the intersection points of the constant conductance and the constant resistance circle.
Based on the circuit diagram above, the intersection point in the lower half of the Smith chart should
be used. Mark it as point A.

7 RF Toolbox Examples

7-130

GammaA = 0.6983*exp(1j*(-134.3)*pi/180);
Za = gamma2z(GammaA,1);
Ya = 1/Za;

Determine the value of Cin from the difference in susceptance from the center of the Smith chart to
point A. Namely,

2πfcCin = Im
Ya
50

where 50 is the reference impedance.

Cin = imag(Ya)/50/2/pi/fc

Cin = 1.1945e-12

Determine the value of Lin from the difference in reactance from point A to GammaS. Namely,

2πfcLin = 50 Im(Zs)− Im(Za)

Lin = (imag(Zs) - imag(Za))*50/2/pi/fc

Lin = 9.6522e-10

Design Output Matching Network Using GammaL

Use the approach described in the previous section on designing the input matching network to
design the output matching network and get the values of Cout and Lout.

 Designing Matching Networks for Low Noise Amplifiers

7-131

GammaB = 0.7055*exp(1j*(-134.9)*pi/180);
Zb = gamma2z(GammaB, 1);
Yb = 1/Zb;
Cout = imag(Yb)/50/2/pi/fc

Cout = 1.2194e-12

Lout = (imag(Zl) - imag(Zb))*50/2/pi/fc

Lout = 1.4682e-09

Verify Design

Create the input and output matching networks. Cascade the input matching network, the amplifier,
the shunt resistor and the output matching network to build the LNA.

input_match = rfckt.cascade('Ckts', ...
 {rfckt.shuntrlc('C',Cin),rfckt.seriesrlc('L',Lin)});
output_match = rfckt.cascade('Ckts', ...
 {rfckt.seriesrlc('L',Lout),rfckt.shuntrlc('C',Cout)});
LNA = rfckt.cascade('ckts', ...
 {input_match,unmatched_amp,shunt_r,output_match});

Analyze the LNA around the design frequency range and plot the available and transducer power
gain. The available and transducer power gain at 5.2 GHz are both 14 dB as the design intended. The
transducer power gain is above 11 dB in the design frequency range, which meets the requirement in
the specification.

analyze(LNA,5.05e9:10e6:5.35e9);
plot(LNA,'Ga','Gt','dB');

Plot the noise figure around the design frequency range.

plot(LNA,'NF','dB')

The noise figure is below 2.2 dB in the design frequency range, which also meets the requirement in
the specification. The noise figure of the LNA at 5.2 GHz is about 0.1 dB above that of the amplifier
(1.84 dB), which demonstrates added noise by the shunt resistor.

The available gain design method is often used in LNA matching. In the second part of the example --
“Designing Matching Networks (Part 2: Single Stub Transmission Lines)” on page 7-133, a
simultaneous conjugate matching example is presented.

See Also

More About
• “Designing Matching Networks (Part 2: Single Stub Transmission Lines)” on page 7-133
• “Design Broadband Matching Networks for Antennas” on page 7-141

7 RF Toolbox Examples

7-132

Designing Matching Networks (Part 2: Single Stub
Transmission Lines)

This example shows how to use the RF Toolbox to determine the input and output matching networks
that maximize power delivered to a 50-Ohm load and system. Designing input and output matching
networks is an important part of amplifier design. This example first calculates the reflection factors
for simultaneous conjugate match and then determines the placement of a shunt stub in each
matching network at a specified frequency. Finally, the example cascades the matching networks with
the amplifier and plots the results.

Create an rfckt.amplifier Object

Create an rfckt.amplifier object to represent the amplifier described by the measured frequency-
dependent S-parameter data in the file samplebjt2.s2p. Then, extract the frequency-dependent
S-parameter data from the rfckt.amplifier object.

amp = read(rfckt.amplifier,'samplebjt2.s2p');
[sparams,AllFreq] = extract(amp.AnalyzedResult,'S_Parameters');

Check for Amplifier Stability

Before proceeding with the design, determine the measured frequencies at which the amplifier is
unconditionally stable. Use the stabilitymu function to calculate mu and muprime at each
frequency. Then, check that the returned values for mu are greater than one. This criteria is a
necessary and sufficient condition for unconditional stability. If the amplifier is not unconditionally
stable, print out the corresponding frequency value.

[mu,muprime] = stabilitymu(sparams);
figure
plot(AllFreq/1e9,mu,'--',AllFreq/1e9,muprime,'r')
legend('MU',"MU'",'Location','Best')
title("Stability Parameters MU and MU'")
xlabel('Frequency [GHz]')

 Designing Matching Networks (Part 2: Single Stub Transmission Lines)

7-133

disp('Measured Frequencies where the amplifier is not unconditionally stable:')

Measured Frequencies where the amplifier is not unconditionally stable:

fprintf('\tFrequency = %.1e\n',AllFreq(mu<=1))

 Frequency = 1.0e+09
 Frequency = 1.1e+09

For this example, the amplifier is unconditionally stable at all measured frequencies except 1.0 GHz
and 1.1 GHz.

Determine the Source and Load Matching Networks for a Simultaneous Conjugate Match

Begin designing the input and output matching networks by transforming the reflection coefficients
for simultaneous conjugate match at the amplifier interfaces into the appropriate source and load
admittance. This example uses the following lossless transmission line matching scheme:

7 RF Toolbox Examples

7-134

The design parameters for this single stub matching scheme are the location of the stubs with
reference to the amplifier interfaces and the stub lengths. The procedure uses the following design
principles:

• The center of the Smith chart represents a normalized source or load immittance.
• Movement along a transmission line is equivalent to traversing a circle centered at the origin of

the Smith chart with radius equal to a reflection coefficient magnitude.
• A single transmission line stub can be inserted at the point on a transmission line when its

admittance (transmission line) intersects the unity conductance circle. At this location, the stub
will negate the transmission line susceptance, resulting in a conductance that equals the load or
source terminations.

This example uses the YZ Smith chart because it's easier to add a stub in parallel with a transmission
line using this type of Smith chart.

Calculate and Plot the Complex Load and Source Reflection Coefficients

calculate and plot all complex load and source reflection coefficients for simultaneous conjugate
match at all measured frequency data points that are unconditionally stable. These reflection
coefficients are measured at the amplifier interfaces.

AllGammaL = calculate(amp,'GammaML','none');
AllGammaS = calculate(amp,'GammaMS','none');
hsm = smithplot([AllGammaL{:} AllGammaS{:}]);
hsm.LegendLabels = {'#Gamma ML','#Gamma MS'};

 Designing Matching Networks (Part 2: Single Stub Transmission Lines)

7-135

Determine the Load Reflection Coefficient at a Single Frequency

Find the load reflection coefficient, GammaL, for the output matching network at the design frequency
1.9 GHz.

freq = AllFreq(AllFreq == 1.9e9);
GammaL = AllGammaL{1}(AllFreq == 1.9e9)

GammaL = -0.0421 + 0.2931i

Draw the Constant Magnitude Circle for Load Reflection Coefficient GammaL

Draw a circle that is centered at the normalized admittance Smith chart origin and whose radius
equals the magnitude of GammaL. A point on this circle represents the reflection coefficient at a
particular location on the transmission line. The reflection coefficient for the transmission line at the
amplifier interface is GammaL, while the center of the chart represents the normalized load
admittance, y_L. The example uses the circle method to draw all appropriate circles on a Smith
chart.

hsm = smithplot;
circle(amp,freq,'Gamma',abs(GammaL),hsm);
hsm.GridType = 'yz';
hold all
plot(0,0,'k.','MarkerSize',16)
plot(GammaL,'k.','MarkerSize',16)
txtstr = sprintf('\\Gamma_{L}\\fontsize{8}\\bf=\\mid%s\\mid%s^\\circ', ...
 num2str(abs(GammaL),4),num2str((angle(GammaL)*180/pi),4));

7 RF Toolbox Examples

7-136

text(real(GammaL),imag(GammaL)+.1,txtstr,'FontSize',10, ...
 'FontUnits','normalized');
plot(0,0,'r',0,0,'k.','LineWidth',2,'MarkerSize',16);
text(0.05,0,'y_L','FontSize',12,'FontUnits','normalized')

Draw the Unity Constant Conductance Circle and Find Intersection Points

To determine the stub wavelength (susceptance) and its location with respect to the amplifier load
matching interface, plot the normalized unity conductance circle and the constant magnitude circle
and figure out where the two circles intersect. Find the points of intersection interactively using the
data cursor or analytically using the helper function, find_circle_intersections_helper. This
example uses the helper function. The circles intersect at two points. The example uses the third-
quadrant point, which is labeled "A". The unity conductance circle is centered at (-.5,0) with radius .5.
The constant magnitude circle is centered at (0,0) with radius equal to the magnitude of GammaL.

circle(amp,freq,'G',1,hsm);
hsm.ColorOrder(2,:) = [1 0 0];
[~,pt2] = imped_match_find_circle_intersections_helper([0 0], ...
 abs(GammaL),[-.5 0],.5);
GammaMagA = sqrt(pt2(1)^2 + pt2(2)^2);
GammaAngA = atan2(pt2(2),pt2(1));
ax = hsm.Parent.CurrentAxes;
hold (ax,"on");
plot(ax, pt2(1),pt2(2),'k.','MarkerSize',16);
txtstr = sprintf('A=\\mid%s\\mid%s^\\circ',num2str(GammaMagA,4), ...
 num2str(GammaAngA*180/pi,4));
text(ax, pt2(1),pt2(2)-.07,txtstr,'FontSize',8,'FontUnits','normalized', ...
 'FontWeight','Bold')
container = hsm.Parent;
annotation(container,'textbox','VerticalAlignment','middle',...
 'String',{'Unity','Conductance','Circle'},...
 'HorizontalAlignment','center','FontSize',8,...
 'EdgeColor',[0.04314 0.5176 0.7804],...
 'BackgroundColor',[1 1 1],'Position',[0.1403 0.1608 0.1472 0.1396])
annotation(container,'arrow',[0.2786 0.3286],[0.2778 0.3310])
annotation(container,'textbox','VerticalAlignment','middle',...
 'String',{'Constant','Magnitude','Circle'},...
 'HorizontalAlignment','center','FontSize',8,...
 'EdgeColor',[0.04314 0.5176 0.7804],...
 'BackgroundColor',[1 1 1],'Position',[0.8107 0.3355 0.1286 0.1454])
annotation(container,'arrow',[0.8179 0.5761],[0.4301 0.4887]);

Calculate the Stub Location and the Stub Length for the Output Matching Network

The open-circuit stub location in wavelengths from the amplifier load interface is a function of the
clockwise angular difference between point "A" and GammaL. When point "A" appears in the third
quadrant and GammaL falls in the second quadrant, the stub position in wavelengths is calculated as
follows:

StubPositionOut = ((2*pi + GammaAngA) - angle(GammaL))/(4*pi)

StubPositionOut = 0.2147

The stub value is the amount of susceptance that is required to move the normalized load admittance
(the center of the Smith chart) to point "A" on the constant magnitude circle. An open stub
transmission line can be used to supply this value of susceptance. Its wavelength is defined by the
amount of angular rotation from the open-circuit admittance point on the Smith chart (point "M" on

 Designing Matching Networks (Part 2: Single Stub Transmission Lines)

7-137

the following figure) to the required susceptance point "N" on the outer edge of the chart. Point "N" is
where a constant susceptance circle with a value equal to the susceptance of point "A" intersects the
unit circle. In addition, the StubLengthOut formula used below requires "N" to fall in the third or
fourth quadrant.

GammaA = GammaMagA*exp(1j*GammaAngA);
bA = imag((1 - GammaA)/(1 + GammaA));
StubLengthOut = -atan2(-2*bA/(1 + bA^2),(1 - bA^2)/(1 + bA^2))/(4*pi)

StubLengthOut = 0.0883

Calculate the Stub Location and the Stub Length for the Input Matching Network

In the previous sections, the example calculated the required lengths and placements, in
wavelengths, for the output matching transmission network. Following the same approach, the line
lengths for the input matching network are calculated:

GammaS = AllGammaS{1}(AllFreq == 1.9e9)

GammaS = -0.0099 + 0.2501i

[pt1,pt2] = imped_match_find_circle_intersections_helper([0 0], ...
 abs(GammaS),[-.5 0],.5);
GammaMagA = sqrt(pt2(1)^2 + pt2(2)^2);
GammaAngA = atan2(pt2(2),pt2(1));
GammaA = GammaMagA*exp(1j*GammaAngA);
bA = imag((1 - GammaA)/(1 + GammaA));
StubPositionIn = ((2*pi + GammaAngA) - angle(GammaS))/(4*pi)

7 RF Toolbox Examples

7-138

StubPositionIn = 0.2267

StubLengthIn = -atan2(-2*bA/(1 + bA^2),(1 - bA^2)/(1 + bA^2))/(4*pi)

StubLengthIn = 0.0759

Verify the Design

To verify the design, assemble a circuit using 50-Ohm microstrip transmission lines for the matching
networks. First, determine if the microstrip line is a suitable choice by analyzing the default
microstrip transmission line at a design frequency of 1.9 GHz.

stubTL4 = rfckt.microstrip;
analyze(stubTL4,freq);
Z0 = stubTL4.Z0;

This characteristic impedance is close to the desired 50-Ohm impedance, so the example can proceed
with the design using these microstrip lines.

To calculate the required transmission line lengths in meters for the placement of the stubs, analyze
the microstrip to obtain a phase velocity value.

phase_vel = stubTL4.PV;

Use the phase velocity value, which determines the transmission line wavelength and the stub
location to set the appropriate transmission line lengths for the two microstrip transmission lines,
TL2 and TL3.

TL2 = rfckt.microstrip('LineLength',phase_vel/freq*StubPositionIn);
TL3 = rfckt.microstrip('LineLength',phase_vel/freq*StubPositionOut);

Use the phase velocity again to specify stub length and stub mode for each stub.

stubTL1 = rfckt.microstrip('LineLength',phase_vel/freq*StubLengthIn, ...
 'StubMode','shunt','Termination','open');
set(stubTL4,'LineLength',phase_vel/freq*StubLengthOut, ...
 'StubMode','shunt','Termination','open')

Now cascade the circuit elements and analyze the amplifier with and without the matching networks
over the frequency range of 1.5 to 2.3 GHz.

matched_amp = rfckt.cascade('Ckts',{stubTL1,TL2,amp,TL3,stubTL4});
analyze(matched_amp,1.5e9:1e7:2.3e9);
analyze(amp,1.5e9:1e7:2.3e9);

To verify the simultaneous conjugate match at the input of the amplifier, plot the S11 parameters in
dB for both the matched and unmatched circuits.

clf
plot(amp,'S11','dB')
hold all
hline = plot(matched_amp,'S11','dB');
hline.Color = 'r';
legend('S_{11} - Original Amplifier', 'S_{11} - Matched Amplifier')
legend('Location','SouthEast')
hold off

To verify the simultaneous conjugate match at the output of the amplifier, plot the S22 parameters in
dB for both the matched and unmatched circuits.

 Designing Matching Networks (Part 2: Single Stub Transmission Lines)

7-139

plot(amp,'S22','dB')
hold all
hline = plot(matched_amp,'S22','dB');
hline.Color = 'r';
legend('S_{22} - Original Amplifier', 'S_{22} - Matched Amplifier')
legend('Location','SouthEast')
hold off

Finally, plot the transducer gain (Gt) and the maximum available gain (Gmag) in dB for the matched
circuit.

hlines = plot(matched_amp,'Gt','Gmag','dB');
hlines(2).Color = 'r';

You can see that the transducer gain and the maximum available gain are very close to each other at
1.9 GHz.

See Also

More About
• “Designing Matching Networks for Low Noise Amplifiers” on page 7-123
• “Design Broadband Matching Networks for Antennas” on page 7-141
• “Design Broadband Matching Networks for Amplifier” on page 7-150

7 RF Toolbox Examples

7-140

Design Broadband Matching Networks for Antennas
This example shows how to design a broadband matching network between a resistive source and
inductive load using optimization with direct search methods.

In an RF system, a matching network circuit plays a vital role in transferring maximum power
between source and the load of the system. In most RF systems, such as wireless devices, a design
parameter called operation bandwidth is specified. By taking the operation bandwidth into
consideration, the purpose of the matching network is further extended to provide maximum power
transfer over a range of frequencies. Alternatively, you can use the L - section matching (conjugate
match) approach, guarantees maximum power transfer it does so only at a single frequency.

Figure 1: Impedance matching of an antenna to a source

To design a broadband matching network, first set the design parameters such as center frequency,
bandwidth, and impedances of source, load and reference. Then calculate the load reflection
coefficient and power gain to determine the frequency at which the matching network of the antenna
must operate and once the design is complete, optimize the derived network.

Specify Frequency and Impedance

Specify the center frequency, 350 MHz, and bandwidth, 110 MHz, of match to build a matching
network with a bandpass response.

fc = 350e6;
BW = 110e6;

Specify the source impedance, the reference impedance and the load resistance. In this example the
load Zl is modeled as a series R-L circuit. Instead of calculating the load impedance, you could
measure the impedance of the load.

Zs = 50; % Source impedance (ohm)
Z0 = 50; % Reference impedance (ohm)
Rl = 40; % Load resistance (ohm)
L = 12e-8; % Load inductance (Henry)

Define the number of frequency points to use for analysis and set up the frequency vector.

nfreq = 256; % Number of frequency points
fLower = fc - (BW/2); % Lower band edge

 Design Broadband Matching Networks for Antennas

7-141

fUpper = fc + (BW/2); % Upper band edge
freq = linspace(fLower,fUpper,nfreq); % Frequency array for analysis
w = 2*pi*freq; % Frequency (radians/sec)

Understand Load Behavior using Reflection Coefficient and Power Gain

Use two simple expressions for calculating the load reflection coefficient and the power gain. This
corresponds to directly connecting the source to the input terminals of an antenna i.e. in Figure 1
there is no matching network.

Xl = w*L; % Reactance (ohm)
Zl = Rl + 1i*Xl; % Load impedance (ohm)
GammaL = (Zl - Z0)./(Zl + Z0); % Load reflection coefficient
unmatchedGt = 10*log10(1 - abs(GammaL).^2); % Power delivered to load

Use the smithplot function to plot the variation in the load reflection coefficient with frequency. An
input reflection coefficient closer to center of the Smith chart denotes a better matching
performance.

figure
smithplot(freq,GammaL,'LegendLabels','#Gamma load','LineWidth',2,...
 'View','top-right');

This plot shows that the load reflection coefficient is far away from this point. Therefore, there is an
impedance mismatch. You can confirm this mismatch by plotting the transducer gain as a function of
frequency.

7 RF Toolbox Examples

7-142

figure
plot(freq.*1e-6,unmatchedGt,'r')
grid on;
title('Power delivered to load - No matching network');
xlabel('Frequency (MHz)');
ylabel('Magnitude (decibels)');
legend('G_t','Location','Best');

As the plot shows, there is approximately 10 dB power loss around the desired region of operation
(295 - 405 MHz). As a result, the antenna needs a matching network that operates over a 110 MHz
bandwidth centered at 350 MHz.

Design Matching Network

The matching network must operate between 295 MHz and 405 MHz, therefore you choose a
bandpass topology for the matching network shown below.

Type - I: Series LC first element followed by shunt LC

 Design Broadband Matching Networks for Antennas

7-143

Figure 2: Matching network topology

The approach is to design an odd order 0.5 dB Chebyshev bandpass to obtain the initial design for the
matching network shown in figure 2. This is a single match problem [1] on page 7-0 , i.e. the source
is purely resistive while load is a combination of R and L, solution is you can begin by choosing a five-
element prototype network.

N = 5; % Order of matching network
filter = rffilter('FilterType',"Chebyshev","FilterOrder",N, ...
 "Implementation","LC Tee","ResponseType","Bandpass",...
 "PassbandFrequency",[fLower fUpper],"PassbandAttenuation",0.5);
Lvals = filter.DesignData.Inductors;

Use the lcladder object to build the bandpass tee matching network. Note that the topology
demands a bandpass tee prototype that begins with a series inductor. If the topology chosen is an LC
bandpass pi then you would begin with shunt C for the lowpass prototype.

% Create the matching network
matchingNW = lcladder(filter);

% Copy initial values for comparison
L_initial = Lvals;

Optimize Designed Matching Network

There are several factors to consider prior to the optimization.

• Objective function - The objective function can be built in different ways depending on the
problem at hand. For this example, the objective function is shown in the file below.

• Choice of cost function - The cost function is the function we would like to minimize (maximize) to
achieve near optimal performance. There could be several ways to choose the cost function. One
obvious choice is the input reflection coefficient, gammaIn. In this example we have chosen to
minimize the average reflection coefficient in the passband.

• Optimization variables - In this case it is a vector of values, for the specific elements to optimize in
the matching network.

• Optimization method - A direct search based technique, the MATLAB® function fminsearch, is
used in this example to perform the optimization.

7 RF Toolbox Examples

7-144

• Number of iterations/function evaluations - Set the maximum number of iterations and function
evaluations to perform, so as to tradeoff between speed and quality of match.

The objective function used during the optimization process by fminsearch is shown here.

type('antennaMatchObjectiveFun.m')

function output = antennaMatchObjectiveFun(matchingNW,Lvalues,freq,ZL,Z0)
%ANTENNAMATCHOBJECTIVEFUN is the objective function used by the example
% Designing Broadband Matching Networks (Part I: Antenna), which can be
% found in broadband_match_antenna.m.
%
% OUTPUT = ANTENNAMATCHOBJECTIVEFUN(MATCHINGNW,LVALUES,FREQ,Z0)
% returns the current value of the objective function stored in OUTPUT
% evaluated after updating the inductor values in the object, MATCHINGNW.
% The inductor values are stored in the variable LVALUES.
%
% ANTENNAMATCHOBJECTIVEFUN is an objective function of RF Toolbox demo:
% Designing Broadband Matching Networks (Part I: Antenna)

% Copyright 2008-2020 The MathWorks, Inc.

% Ensure positive element values
if any(Lvalues <= 0)
 output = Inf;
 return
end

% Update the element values in the matching network
matchingNW.Inductances(1) = Lvalues(1);
matchingNW.Inductances(end) = Lvalues(end);

% Perform analysis on tuned matching network
S = sparameters(matchingNW,freq,Z0);

% Calculate input reflection coefficient 'gammaIn'
gIn = gammain(S,ZL);

% Cost function
output = mean(abs(gIn));

% Other possible choices for objective function could be : -
% output = max(abs(gIn));
% output = -1*mean(Gt_pass);

% Animate
smithplot(freq,gIn);
drawnow

There are several ways to choose the cost function and some options are shown within the objective
function above (in comments). The optimization variables are the first and last inductors, L1 and L5
respectively. The element values are stored in the variable L_Optimized.

niter = 125;
options = optimset('Display','iter','MaxIter',niter); % Set options structure
L_Optimized = [Lvals(1) Lvals(end)];
L_Optimized = ...

 Design Broadband Matching Networks for Antennas

7-145

 fminsearch(@(L_Optimized)antennaMatchObjectiveFun(matchingNW, ...
 L_Optimized,freq,Zl,Z0),L_Optimized,options);

 Iteration Func-count min f(x) Procedure
 0 1 0.933982
 1 3 0.933982 initial simplex
 2 5 0.920323 expand
 3 7 0.911353 expand
 4 9 0.853255 expand
 5 11 0.730444 expand
 6 13 0.526448 reflect
 7 15 0.526448 contract inside
 8 17 0.421103 reflect
 9 19 0.421103 contract inside
 10 20 0.421103 reflect
 11 22 0.421103 contract inside
 12 24 0.421103 contract inside
 13 26 0.339935 expand
 14 27 0.339935 reflect
 15 29 0.28528 reflect
 16 31 0.28528 contract inside
 17 32 0.28528 reflect
 18 34 0.283527 reflect
 19 36 0.283527 contract inside
 20 38 0.278939 contract inside
 21 40 0.278123 reflect
 22 41 0.278123 reflect
 23 43 0.27636 contract inside
 24 45 0.275782 contract inside
 25 47 0.275637 contract inside
 26 49 0.275498 reflect
 27 51 0.275282 contract inside
 28 52 0.275282 reflect
 29 54 0.275282 contract inside

7 RF Toolbox Examples

7-146

 30 56 0.275282 contract inside

Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04

Update Matching Network Elements with Optimal Values

When the optimization routine stops, the optimized element values are stored in L_Optimized. The
following code updates the input and output matching network with these values.

matchingNW.Inductances(1) = L_Optimized(1); % Update the matching network inductor L1
matchingNW.Inductances(end) = L_Optimized(end); % Update the matching network inductor L5

Analyze and Display Optimization Results

Compare and plot the input reflection coefficient of the matched and unmatched results.

S = sparameters(matchingNW,freq,Z0);
gIn = gammain(S,Zl);
smithplot(freq,[gIn transpose(GammaL)],'LegendLabels',...
 {'#Gamma in (Matched)','#Gamma in (Unmatched)'})

The optimized matching network improves the performance of the circuit. In the passband (295 - 405
MHz), the input reflection coefficient is closer to the center of the Smith chart. Plot the power
delivered to load for both the matched and unmatched system.

matchedGt = powergain(S,Zs,Zl,'Gt');
figure;

 Design Broadband Matching Networks for Antennas

7-147

plot(freq*1e-6,matchedGt)
hold all;
plot(freq*1e-6,unmatchedGt,'r')
grid on;
hold off;
title('Power delivered to load');
legend('Optimized network','No matching network','Location','Best');

The power delivered to the load is approximately 1 dB down for the optimized matching network.

Display Optimized Element Values

The following code shows the initial and optimized values for inductors L1 and L5.

L1_Initial = L_initial(1)

L1_Initial = 1.2340e-07

L1_Optimized = L_Optimized(1)

L1_Optimized = 1.2111e-07

L5_Initial = L_initial(end)

L5_Initial = 1.2340e-07

L5_Optimized = L_Optimized(end)

L5_Optimized = 1.7557e-09

7 RF Toolbox Examples

7-148

There are few things to consider when setting up an optimization:

• Choosing a different objective function would change the result.
• You can use advanced direct search optimization functions such as patternsearch and

simulannealband in your optimization, but you must have the Global Optimization Toolbox™
installed to access them.

References

1 Cuthbert, Thomas R. Broadband Direct-Coupled and Matching RF Networks. TRCPEP, 1999.
2 Ludwig, Reinhold, and Pavel Bretchko. RF Circuit Design: Theory and Applications. Prentice-Hall,

2000.
3 Pozar, David. Microwave Engineering. 2nd ed., John Wiley and Sons, 1999.

See Also

“Design Broadband Matching Networks for Amplifier” on page 7-150.

See Also

More About
• “Design Broadband Matching Networks for Amplifier” on page 7-150
• “Impedance Matching of Small Monopole Antenna” on page 7-162

 Design Broadband Matching Networks for Antennas

7-149

Design Broadband Matching Networks for Amplifier
This example shows how to design broadband matching networks for a low noise amplifier (LNA).

In an RF receiver front end, the LNA is commonly found immediately after the antenna or after the
first bandpass filter that follows the antenna. Its position in the receiver chain ensures that it deals
with weak signals that have significant noise content. As a result the LNA has to not only provide
amplification to such signals but also minimize its own noise footprint on the amplified signal.

In this example you will design an LNA to achieve the target gain and noise figure specifications over
a specified bandwidth, using lumped LC elements. A direct-search based approach is used to arrive at
the optimum element values in the input and output matching network.

Figure 1: Impedance matching of an amplifier

Set Design Parameters

The design specifications are as follows.

• Amplifier is an LNA amplifier
• Center Frequency = 250 MHz
• Bandwidth = 100 MHz
• Transducer Gain greater than or equal to 10 dB
• Noise Figure less than or equal to 2.0 dB
• Operating between 50-Ohm terminations

Specify Design Parameters

You are building the matching network for an LNA with a bandpass response, so specify the
bandwidth of match, center frequency, gain, and noise figure targets.

BW = 100e6; % Bandwidth of matching network (Hz)
fc = 250e6; % Center frequency (Hz)
Gt_target = 10; % Transducer gain target (dB)
NFtarget = 2; % Max noise figure target (dB)

Specify the source impedance, reference impedance, and the load impedance.

Zs = 50; % Source impedance (Ohm)
Z0 = 50; % Reference impedance (Ohm)
Zl = 50; % Load impedance (Ohm)

7 RF Toolbox Examples

7-150

Create Amplifier Object and Perform Analysis

Use the read method to create an amplifier object using data from the file lnadata.s2p.

Unmatched_Amp = read(rfckt.amplifier,'lnadata.s2p');

Define the number of frequency points to use for analysis and set up the frequency vector.

Npts = 32; % No. of analysis frequency points
fLower = fc - (BW/2); % Lower band edge
fUpper = fc + (BW/2); % Upper band edge
freq = linspace(fLower,fUpper,Npts); % Frequency array for analysis
w = 2*pi*freq; % Frequency (radians/sec)

Use the analyze method to perform frequency-domain analysis at the frequency points in the vector
freq.

analyze(Unmatched_Amp,freq,Zl,Zs,Z0); % Analyze unmatched amplifier

Examine Stability, Power Gain, and Noise Figure

The LNA must operate in a stable region, to examine stability, plot Delta and K for the transistor.
Use the plot method of the rfckt object to plot Delta and K as a function of frequency to see if the
transistor is stable.

figure
plot(Unmatched_Amp,'Delta','mag')
hold all
plot(Unmatched_Amp,'K')
title('Device stability parameters')
hold off
grid on

 Design Broadband Matching Networks for Amplifier

7-151

As the plot shows, K > 1 and Δ < 1 for all frequencies in the bandwidth of interest. This means that
the device is unconditionally stable. It is also important to view the power gain and noise figure
behavior across the same bandwidth. Together with the stability information this data allows you to
determine if the gain and noise figure targets can be met.

plot(Unmatched_Amp,'Ga','Gt','dB')

7 RF Toolbox Examples

7-152

This plot, shows the power gain across the 100-MHz bandwidth. It indicates that the transducer gain
varies linearly between 5.5 dB to about 3.1 dB and achieves only 4.3 dB at band center. It also
suggests there is sufficient headroom between the transducer gain Gt and the available gain Ga to
achieve our target Gt of 10 dB.

plot(Unmatched_Amp,'Fmin','NF','dB')
axis([200 300 0 2])
legend('Location','NorthEast')

 Design Broadband Matching Networks for Amplifier

7-153

This plot shows the variation of the noise figure with frequency. The unmatched amplifier clearly
meets the target noise figure requirement. However this would change once the input and output
matching networks are included. Most likely, the noise figure of the LNA would exceed the
requirement.

Design Input and Output Matching Networks

The region of operation is between 200 — 300 MHz. Therefore, choose a bandpass topology for the
matching networks which is shown here.

7 RF Toolbox Examples

7-154

Figure 2: Matching network topology

The topology chosen, as seen in Figure 2, is a direct-coupled prototype bandpass network of parallel
resonator type with top coupling [2], that is initially tuned to the geometric mean frequency with
respect to the bandwidth of operation.

N_input = 3; % Order of input matching network
N_output = 3; % Order of output matching network
wU = 2*pi*fUpper; % Upper band edge
wL = 2*pi*fLower; % Lower band edge
w0 = sqrt(wL*wU); % Geometric mean

For the initial design all the inductors are assigned the same value on the basis of the first series
inductor. As mentioned in [3], choose the prototype value to be unity and use standard impedance
and frequency transformations to obtain denormalized values [1]. The value for the capacitor in the
parallel trap is set using this inductor value to make it resonate at the geometric mean frequency.
Note that there are many ways of designing the initial matching network. This example shows one
possible approach.

LvaluesIn = (Zs/(wU-wL))*ones(N_input,1); % Series and shunt L's [H]
CvaluesIn = 1 / ((w0^2)*LvaluesIn(2)); % Shunt C [F]

Form Complete Circuit with Matching Networks and Amplifier

Use either the rfckt.seriesrlc or rfckt.shuntrlc constructor to build each branch of the
matching network. Then, form the matching network from these individual branches by creating an
rfckt.cascade object. The output matching network for this example is the same as the input
matching network.

LC_InitialIn = [LvaluesIn;CvaluesIn];
LvaluesOut = LvaluesIn;
CvaluesOut = CvaluesIn;
LC_InitialOut = [LvaluesOut;CvaluesOut];

InputMatchingNW = rfckt.cascade('Ckts', ...
 {rfckt.seriesrlc('L',LvaluesIn(1)), ...
 rfckt.shuntrlc('C',CvaluesIn,'L',LvaluesIn(2)), ...
 rfckt.seriesrlc('L',LvaluesIn(3))});

OutputMatchingNW = rfckt.cascade('Ckts', ...
 {rfckt.seriesrlc('L',LvaluesOut(1)), ...
 rfckt.shuntrlc('C',CvaluesOut,'L',LvaluesOut(2)), ...
 rfckt.seriesrlc('L',LvaluesOut(3))});

Put together the LNA network consisting of matching networks and amplifier by creating an
rfckt.cascade object as shown in previous section.

Matched_Amp = rfckt.cascade('Ckts', ...
 {InputMatchingNW,Unmatched_Amp,OutputMatchingNW});

Optimize Input & Output Matching Network

There are several points to consider prior to the optimization.

• Objective function: The objective function can be built in different ways depending on the problem
at hand. For this example, the objective function is shown in the file below.

 Design Broadband Matching Networks for Amplifier

7-155

• Choice of cost function: The cost function is the function you would like to minimize (maximize) to
achieve near optimal performance. There could be several ways to choose the cost function. For
this example you have two requirements to satisfy simultaneously, i.e. gain and noise figure. To
create the cost function you first, find the difference, between the most current optimized network
and the target value for each requirement at each frequency. The cost function is the L2-norm of
the vector of gain and noise figure error values.

• Optimization variables: In this case it is a vector of values, for the specific elements to optimize in
the matching network.

• Optimization method: A direct search based technique, the MATLAB® function fminsearch, is
used in this example to perform the optimization.

• Number of iterations/function evaluations: Set the maximum no. of iterations and function
evaluations to perform, so as to tradeoff between speed and quality of match.

• Tolerance value: Specify the variation in objective function value at which the optimization
process should terminate.

The objective function used during the optimization process by fminsearch is shown here.

type('broadband_match_amplifier_objective_function.m')

function output = broadband_match_amplifier_objective_function(AMP,LC_Optim,freq,Gt_target,NF,Zl,Zs,Z0)
%BROADBAND_MATCH_AMPLIFIER_OBJECTIVE_FUNCTION Is the objective function.
% OUTPUT = BROADBAND_MATCH_AMPLIFIER_OBJECTIVE_FUNCTION(AMP,LC_OPTIM,FREQ,GT_TARGET,NF,Zl,Zs,Z0)
% returns the current value of the objective function stored in OUTPUT
% evaluated after updating the element values in the object, AMP. The
% inductor and capacitor values are stored in the variable LC_OPTIM.
%
% BROADBAND_MATCH_AMPLIFIER_OBJECTIVE_FUNCTION is an objective function of RF Toolbox demo:
% Designing Broadband Matching Networks (Part II: Amplifier)

% Copyright 2008 The MathWorks, Inc.

% Ensure positive element values
if any(LC_Optim<=0)
 output = inf;
 return;
end
% Update matching network elements - The object AMP has several properties
% among which the cell array 'ckts' consists of all circuit objects from
% source to load. Since RFCKT.CASCADE was used twice, first to form the
% matching network itself and a second time to form the LNA, we have to
% step through two sets of cell arrays to access the elements
for loop1 = 1:3
 AMP.ckts{1}.ckts{loop1}.L = LC_Optim(loop1);
 AMP.ckts{3}.ckts{loop1}.L = LC_Optim(loop1+4);
end
AMP.ckts{1}.ckts{2}.C = LC_Optim(4);
AMP.ckts{3}.ckts{2}.C = LC_Optim(8);

% Perform analysis on tuned matching network
Npts = length(freq);
analyze(AMP,freq,Zl,Zs,Z0);

% Calculate target parameters of the Amplifier
target_param = calculate(AMP,'Gt','NF','dB');
Gt = target_param{1}(1:Npts,1);

7 RF Toolbox Examples

7-156

NF_amp = target_param{2}(1:Npts,1);

% Calculate Target Gain and noise figure error
errGt = (Gt - Gt_target);
errNF = (NF_amp - NF);

% Check to see if gain and noise figure target are achieved by specifying
% bounds for variation.
deltaG = 0.40;
deltaNF = -0.05;
errGt(abs(errGt)<=deltaG) = 0;
errNF(errNF<deltaNF) = 0;

% Cost function
err_vec = [errGt;errNF];
output = norm((err_vec),2);

% Animate
Gmax = (Gt_target + deltaG).*ones(1,Npts);
Gmin = (Gt_target - deltaG).*ones(1,Npts);
plot(AMP,'Gt','NF','dB');
hold on
plot(freq.*1e-6,Gmax,'r-*')
plot(freq.*1e-6,Gmin,'r-*')
legend('G_t','NF','Gain bounds','Location','East');
axis([freq(1)*1e-6 freq(end)*1e-6 0 Gt_target+2]);
hold off
drawnow;

The optimization variables are all the elements (inductors and capacitors) of the input and output
matching networks.

nIter = 125; % Max No of Iterations
options = optimset('Display','iter','TolFun',1e-2,'MaxIter',nIter); % Set options structure
LC_Optimized = [LvaluesIn;CvaluesIn;LvaluesOut;CvaluesOut];
LC_Optimized = fminsearch(@(LC_Optimized) broadband_match_amplifier_objective_function(Matched_Amp,...
 LC_Optimized,freq,Gt_target,NFtarget,Zl,Zs,Z0),LC_Optimized,options);

 Iteration Func-count min f(x) Procedure
 0 1 30.4869
 1 9 28.3549 initial simplex
 2 11 25.5302 expand
 3 12 25.5302 reflect
 4 13 25.5302 reflect
 5 14 25.5302 reflect
 6 16 22.8228 expand
 7 17 22.8228 reflect
 8 19 19.0289 expand
 9 20 19.0289 reflect
 10 21 19.0289 reflect
 11 22 19.0289 reflect
 12 24 14.8785 expand
 13 25 14.8785 reflect
 14 27 10.721 expand
 15 28 10.721 reflect
 16 29 10.721 reflect
 17 31 9.84796 expand

 Design Broadband Matching Networks for Amplifier

7-157

 18 32 9.84796 reflect
 19 33 9.84796 reflect
 20 34 9.84796 reflect
 21 35 9.84796 reflect
 22 37 9.84796 contract outside
 23 39 9.84796 contract outside
 24 41 9.84796 contract inside
 25 43 9.64666 reflect
 26 45 9.64666 contract inside
 27 46 9.64666 reflect
 28 48 9.64666 contract inside
 29 49 9.64666 reflect
 30 51 9.64666 contract inside
 31 53 7.9372 expand
 32 55 7.9372 contract outside
 33 56 7.9372 reflect
 34 57 7.9372 reflect
 35 58 7.9372 reflect
 36 59 7.9372 reflect
 37 60 7.9372 reflect
 38 62 5.98211 expand
 39 63 5.98211 reflect
 40 64 5.98211 reflect
 41 65 5.98211 reflect
 42 66 5.98211 reflect
 43 68 4.31973 expand
 44 70 4.31973 contract inside
 45 71 4.31973 reflect
 46 72 4.31973 reflect
 47 73 4.31973 reflect
 48 74 4.31973 reflect
 49 75 4.31973 reflect
 50 77 2.83135 expand
 51 79 1.17624 expand
 52 80 1.17624 reflect
 53 81 1.17624 reflect
 54 82 1.17624 reflect
 55 84 0.691645 reflect
 56 85 0.691645 reflect
 57 86 0.691645 reflect
 58 88 0.691645 contract inside
 59 90 0.691645 contract outside
 60 91 0.691645 reflect
 61 93 0.691645 contract inside
 62 95 0.691645 contract inside
 63 96 0.691645 reflect
 64 97 0.691645 reflect
 65 98 0.691645 reflect
 66 100 0.691645 contract inside
 67 102 0.691645 contract outside
 68 103 0.691645 reflect
 69 105 0.691645 contract inside
 70 107 0.497434 reflect
 71 109 0.497434 contract inside
 72 111 0.497434 contract inside
 73 112 0.497434 reflect
 74 114 0.497434 contract inside
 75 116 0.497434 contract inside

7 RF Toolbox Examples

7-158

 76 118 0.444957 reflect
 77 120 0.402851 expand
 78 122 0 reflect
 79 123 0 reflect
 80 125 0 contract inside
 81 127 0 contract inside
 82 128 0 reflect
 83 129 0 reflect
 84 130 0 reflect
 85 131 0 reflect
 86 132 0 reflect
 87 133 0 reflect
 88 134 0 reflect
 89 135 0 reflect
 90 137 0 contract inside

 91 139 0 contract outside

Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-02

Update Matching Network and Re-analyze LNA

When the optimization routine stops, the optimized element values are stored in LC_Optimized. The
following code updates the input and output matching network with these values.

 Design Broadband Matching Networks for Amplifier

7-159

for loop1 = 1:3
 Matched_Amp.ckts{1}.ckts{loop1}.L = LC_Optimized(loop1);
 Matched_Amp.ckts{3}.ckts{loop1}.L = LC_Optimized(loop1 + 4);
end
Matched_Amp.ckts{1}.ckts{2}.C = LC_Optimized(4);
Matched_Amp.ckts{3}.ckts{2}.C = LC_Optimized(8);
analyze(Matched_Amp,freq,Zl,Zs,Z0); % Analyze LNA

Verify Design

The results of optimization can be viewed by plotting the transducer gain and the noise figure across
the bandwidth, and comparing it with the unmatched amplifier.

plot(Matched_Amp,'Gt')
hold all
plot(Unmatched_Amp,'Gt')
plot(Matched_Amp,'NF')
plot(Unmatched_Amp,'NF')
legend('G_t - Matched','G_t - Unmatched','NF - Matched',...
 'NF - Unmatched','Location','East')
axis([freq(1)*1e-6 freq(end)*1e-6 0 12])
hold off

The plot shows, the target requirement for both gain and noise figure have been met. To understand
the effect of optimizing with respect to only the transducer gain, use the first choice for the cost
function (which involves only the gain term) within the objective function shown above.

7 RF Toolbox Examples

7-160

Display Optimized Element Values

The optimized inductor and capacitor values for the input matching network are shown below.

Lin_Optimized = LC_Optimized(1:3)

Lin_Optimized = 3×1
10-7 ×

 0.5722
 0.9272
 0.3546

Cin_Optimized = LC_Optimized(4)

Cin_Optimized = 6.8526e-12

Similarly, here are the optimized inductor and capacitor values for the output matching network

Lout_Optimized = LC_Optimized(5:7)

Lout_Optimized = 3×1
10-6 ×

 0.0517
 0.1275
 0.0581

Cout_Optimized = LC_Optimized(8)

Cout_Optimized = 5.4408e-12

References

[1] Ludwig, Reinhold, and Gene Bogdanov. RF Circuit Design: Theory and Applications. Upper Saddle
River, NJ: Prentice-Hall, 2009.

[2] Cuthbert, Thomas R. Broadband Direct-Coupled and Matching RF Networks. Greenwood, Ark.:
T.R. Cuthbert, 1999.

[3] Cuthbert, T.R. “A Real Frequency Technique Optimizing Broadband Equalizer Elements.” In 2000
IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century.
Proceedings (IEEE Cat No.00CH36353), 5:401–4. Geneva, Switzerland: Presses Polytech. Univ.
Romandes, 2000. https://doi.org/10.1109/ISCAS.2000.857453.

[4] Pozar, David M. Microwave Engineering. 4th ed. Hoboken, NJ: Wiley, 2012.

See Also

More About
• “Design Broadband Matching Networks for Antennas” on page 7-141
• “Impedance Matching of Small Monopole Antenna” on page 7-162

 Design Broadband Matching Networks for Amplifier

7-161

Impedance Matching of Small Monopole Antenna
This example shows how to design a double tuning L-section matching network between a resistive
source and capacitive load in the form of a small monopole by using the matchingnetwork object.
The L-section consists of two inductors. The network achieves conjugate match and guarantees
maximum power transfer at a single frequency. This example requires the following product:

• Antenna Toolbox™

Create Monopole

Create a quarter-wavelength monopole antenna via the Antenna Toolbox with the resonant frequency
around 1 GHz. For the purpose of this example, we choose a square ground plane of side 0 . 75λ.

fres = 1e9;
speedOfLight = physconst('lightspeed');
lambda = speedOfLight/fres;
L = 0.25*lambda;
dp = monopole('Height',L,'Width',L/50,...
 'GroundPlaneLength',0.75*lambda,...
 'GroundPlaneWidth',0.75*lambda);

Calculate Monopole Impedance

Specify the source (generator) impedance, the reference (transmission line) impedance and the load
(antenna) impedance. In this example, the load Zl0 will be the non-resonant (small) monopole at the
frequency of 500 MHz, which is the half of the resonant frequency. The source has the equivalent
impedance of 50 ohms.

f0 = fres/2;
Zs = 50;
Z0 = 50;
Zl0 = impedance(dp,f0);
Rl0 = real(Zl0);
Xl0 = imag(Zl0);

Define the number of frequency points for the analysis and set up a frequency band about 500 MHz.

Npts = 30;
fspan = 0.1;
fmin = f0*(1 - (fspan/2));
fmax = f0*(1 + (fspan/2));
freq = unique([f0 linspace(fmin,fmax,Npts)]);

Understand Load Behavior using Reflection Coefficient and Power Gain

Calculate the load reflection coefficient and the power gain between the source and the antenna.

S = sparameters(dp, freq);
GammaL = rfparam(S, 1,1);
Gt = 10*log10(1 - abs(GammaL).^2);

Plotting the input reflection coefficient on a Smith chart shows the capacitive behavior of this
antenna around the operating frequency of 500 MHz. The center of the Smith chart represents the
matched condition to the reference impedance. The location of the reflection coefficient trace around
− j5 . 0 Ω confirms that there is a severe impedance mismatch.

7 RF Toolbox Examples

7-162

fig1 = figure;
hsm = smithplot(fig1,freq,GammaL,'LineWidth',2.0,'Color','m',...
 'View','bottom-right','LegendLabels',{'#Gamma L'});

Plot the power delivered to the load.

fig2 = figure;
plot(freq*1e-6,Gt,'m','LineWidth',2);
grid on
xlabel('Frequency [MHz]')
ylabel('Magnitude (dB)')
title('Power delivered to load')

 Impedance Matching of Small Monopole Antenna

7-163

As the power gain plot shows, there is approximately 20 dB power loss around the operating
frequency (500 MHz).

Design Matching Network

The matching network must ensure maximum power transfer at 500 MHz. The L-section double
tuning network achieves this goal [1]. The network topology, shown in the figure consists of an
inductor in series with the antenna, that cancels the large capacitance at 500 MHz, and a shunt
inductor that further boosts the output resistance to match the source impedance of 50 Ω.

Use the matchingnetwork object to create various matching network circuits based on the source
impedance, load impedance, and center frequency.

7 RF Toolbox Examples

7-164

matchnw = matchingnetwork('CenterFrequency',f0,'LoadImpedance',Zl0,'Bandwidth',50e6);
matchnw.clearEvaluationParameter(1); % clear default constraint

The values of each element for the circuits generated are shown below.

[circuit_list, performance] = circuitDescriptions(matchnw)

circuit_list=4×5 table
 circuitName component1Type component1Value component2Type component2Value
 ___________ ______________ _______________ ______________ _______________

 Circuit 1 "auto_1" "Series L" 2.97e-07 "Shunt L" 1.0359e-07
 Circuit 2 "auto_2" "Series C" 3.4115e-13 "Shunt L" 6.1094e-08
 Circuit 3 "auto_3" "Shunt C" 2.3801e-11 "Series L" 8.0817e-08
 Circuit 4 "auto_4" "Shunt L" 4.2569e-09 "Series L" 7.2871e-08

performance=4×4 table
 circuitName evaluationPassed testsFailed performanceScore
 ___________ ________________ ____________ ________________

 Circuit 1 "auto_1" {["Yes"]} {0x0 double} {[0]}
 Circuit 2 "auto_2" {["Yes"]} {0x0 double} {[0]}
 Circuit 3 "auto_3" {["Yes"]} {0x0 double} {[0]}
 Circuit 4 "auto_4" {["Yes"]} {0x0 double} {[0]}

Create Matching Network and Calculate S-parameters

The matching network circuit is created via the RF Toolbox™ and it consists of the two inductors
whose values have been calculated above. The S-parameters of this network are calculated over the
frequency band centered at the operating frequency.

Calculate the S-parameters based on desired matching network (this example uses circuit #2).

ckt_no = 4;
Smatchnw = sparameters(matchnw, freq, Z0, ckt_no);

The circuit element representation of the matching network is shown below.

disp(matchnw.Circuit(ckt_no))

 circuit: Circuit element

 ElementNames: {'L' 'L_1'}
 Elements: [1x2 inductor]
 Nodes: [1 2 3]
 Name: 'auto_4'
 NumPorts: 2
 Terminals: {'p1+' 'p2+' 'p1-' 'p2-'}

Reflection Coefficient and Power Gain with Matching Network

Calculate the input reflection coefficient/power gain for the antenna load with the matching network.

Zl = impedance(dp,freq);
GammaIn = gammain(Smatchnw,Zl);
Gtmatch = powergain(Smatchnw,Zs,Zl,'Gt');
Gtmatch = 10*log10(Gtmatch);

 Impedance Matching of Small Monopole Antenna

7-165

Compare Results

Plot the input reflection coefficient and power delivered to the antenna, with and without the
matching network. The Smith® chart plot shows the reflection coefficient trace going through its
center thus confirming the match. At the operation frequency of 500 MHz, the generator transfers
maximum power to the antenna. The match degrades on either side of the operating frequency.

add(hsm,freq,GammaIn);
hsm.LegendLabels(2) = {'#Gamma In'};
hsm.View = 'full';

Plot power delivered to the load.

figure(fig2)
hold on
plot(freq*1e-6,Gtmatch,'LineWidth',2);
axis([min(freq)*1e-6,max(freq)*1e-6,-25,0])
legend('No matching network','Double tuning','Location','Best');

7 RF Toolbox Examples

7-166

Matching Network Designer

The Matching Network Designer allows to design matching networks or view an existing
matchingnetwork object.

Type this command at the command line to open the Matching Network Designer app. Use the
matchnw object and select "auto_4" to view the corresponding circuit.

matchingNetworkDesigner(matchnw)

 Impedance Matching of Small Monopole Antenna

7-167

References

[1] M. M. Weiner, Monopole Antennas, Marcel Dekker, Inc.,CRC Press, Rev. Exp edition, New York,
pp.110-118, 2003.

See Also

More About
• “Design Broadband Matching Networks for Antennas” on page 7-141
• “Design Broadband Matching Networks for Amplifier” on page 7-150

7 RF Toolbox Examples

7-168

Operations with RF Circuit Objects
This example shows how to create and use RF Toolbox™ circuit objects. In this example, you create
three circuit (rfckt) objects: two transmission lines and an amplifier.

You visualize the amplifier data using RF Toolbox™ functions and retrieve the frequency data that
was read from a file into the amplifier rfckt object. Then you analyze the amplifier over a different
frequency range and visualize the results. Next, you cascade the three circuits, analyze the cascaded
network and visualize its S-parameters over the original frequency range of the amplifier. Finally, you
plot the S11, S22, and S21 parameters, and noise figure of the cascaded network.

Create rfckt Objects

Create three circuit objects: two transmission lines, and an amplifier using data from default.amp
data file.

FirstCkt = rfckt.txline;
SecondCkt = rfckt.amplifier('IntpType','cubic');
read(SecondCkt,'default.amp');
ThirdCkt = rfckt.txline('LineLength',0.025,'PV',2.0e8);

View Properties of rfckt Objects

You can use the get function to view an object's properties. For example,

PropertiesOfFirstCkt = get(FirstCkt)

PropertiesOfFirstCkt = struct with fields:
 LineLength: 0.0100
 StubMode: 'NotAStub'
 Termination: 'NotApplicable'
 Freq: 1.0000e+09
 Z0: 50.0000 + 0.0000i
 PV: 299792458
 Loss: 0
 IntpType: 'Linear'
 nPort: 2
 AnalyzedResult: []
 Name: 'Transmission Line'

PropertiesOfSecondCkt = get(SecondCkt)

PropertiesOfSecondCkt = struct with fields:
 NoiseData: [1x1 rfdata.noise]
 NonlinearData: [1x1 rfdata.power]
 IntpType: 'Cubic'
 NetworkData: [1x1 rfdata.network]
 nPort: 2
 AnalyzedResult: [1x1 rfdata.data]
 Name: 'Amplifier'

PropertiesOfThirdCkt = get(ThirdCkt)

PropertiesOfThirdCkt = struct with fields:
 LineLength: 0.0250
 StubMode: 'NotAStub'

 Operations with RF Circuit Objects

7-169

 Termination: 'NotApplicable'
 Freq: 1.0000e+09
 Z0: 50.0000 + 0.0000i
 PV: 200000000
 Loss: 0
 IntpType: 'Linear'
 nPort: 2
 AnalyzedResult: []
 Name: 'Transmission Line'

List Methods of rfckt Objects

You can use the methods function to list an object's methods. For example,

MethodsOfThirdCkt = methods(ThirdCkt)

MethodsOfThirdCkt = 82x1 cell
 {'addlistener' }
 {'analyze' }
 {'calcgroupdelay' }
 {'calckl' }
 {'calcpout' }
 {'calculate' }
 {'calczin' }
 {'checkbool' }
 {'checkchar' }
 {'checkenum' }
 {'checkenumexact' }
 {'checkfrequency' }
 {'checkproperty' }
 {'checkproptype' }
 {'checkreadonlyproperty'}
 {'checkrealscalardouble'}
 {'circle' }
 {'convertfreq' }
 {'copy' }
 {'delete' }
 {'destroy' }
 {'disp' }
 {'eq' }
 {'extract' }
 {'findimpedance' }
 {'findobj' }
 {'findprop' }
 {'ge' }
 {'get' }
 {'getdata' }
 ⋮

Change Properties of rfckt Objects

Use the get function or Dot Notation to get the line length of the first transmission line.

DefaultLength = FirstCkt.LineLength;

Use the set function or Dot notation to change the line length of the first transmission line.

7 RF Toolbox Examples

7-170

FirstCkt.LineLength = .001;
NewLength = FirstCkt.LineLength;

Plot Amplifier S11 and S22 Parameters

Use the smithplot method of circuit object to plot the original S11 and S22 parameters of the
amplifier (SecondCkt) on a Z Smith chart. The original frequencies of the amplifier's S-parameters
range from 1.0 GHz to 2.9 GHz.

figure
smithplot(SecondCkt,[1 1;2 2]);

Plot Amplifier Pin-Pout Data

Use the plot method of circuit object to plot the amplifier (SecondCkt) Pin-Pout data, in dBm, at 2.1
GHz on an X-Y plane.

figure
plot(SecondCkt,'Pout','dBm')

 Operations with RF Circuit Objects

7-171

legend('show','Location','northwest');

Get Original Frequency Data and Result of Analyzing Amplifier over Original Frequencies

When the RF Toolbox reads data from default.amp into an amplifier object (SecondCkt), it also
analyzes the amplifier over the frequencies of network parameters in default.amp file and store the
result at the property AnalyzedResult. Here are the original amplifier frequency and analyzed
result over it.

f = SecondCkt.AnalyzedResult.Freq;
data = SecondCkt.AnalyzedResult

data =
 rfdata.data with properties:

 Freq: [191x1 double]
 S_Parameters: [2x2x191 double]
 GroupDelay: [191x1 double]
 NF: [191x1 double]
 OIP3: [191x1 double]
 Z0: 50.0000 + 0.0000i
 ZS: 50.0000 + 0.0000i
 ZL: 50.0000 + 0.0000i
 IntpType: 'Cubic'
 Name: 'Data object'

7 RF Toolbox Examples

7-172

Analyze and Plot S11 and S22 of Amplifier Circuit with Different Frequencies

To visualize the S-parameters of a circuit over a different frequency range, you must first analyze it
over the specified frequency range.

analyze(SecondCkt,1.85e9:1e7:2.55e9);
smithplot(SecondCkt,[1 1;2 2],'GridType','ZY')

Create and Analyze Cascaded rfckt Object

Cascade three circuit objects to create a cascaded circuit object, and then analyze it at the original
amplifier frequencies which range from 1.0 GHz to 2.9 GHz.

CascadedCkt = rfckt.cascade('Ckts',{FirstCkt,SecondCkt,ThirdCkt});
analyze(CascadedCkt,f)

ans =
 rfckt.cascade with properties:

 Ckts: {1x3 cell}
 nPort: 2
 AnalyzedResult: [1x1 rfdata.data]
 Name: 'Cascaded Network'

 Operations with RF Circuit Objects

7-173

Figure 1: The cascaded circuit.

Plot S11 and S22 Parameters of Cascaded Circuit

Use the smithplot method of circuit object to plot S11 and S22 of the cascaded circuit
(CascadedCkt) on a Z Smith chart.

smithplot(CascadedCkt,[1 1;2 2],'GridType','Z')

Plot S21 Parameters of Cascaded Circuit

Use the plot method of circuit object to plot S21 of the cascaded circuit (CascadedCkt) on an X-Y
plane.

plot(CascadedCkt,'S21','dB')
legend show;

Plot Budget S21 Parameters and Noise Figure of Cascaded Circuit

Use the plot method of circuit object to plot the budget S21 parameters and noise figure of the
cascaded circuit (CascadedCkt) on an X-Y plane.

plot(CascadedCkt,'budget','S21','NF')
legend show;

See Also

More About
• “Bandpass Filter Response using RFCKT Objects” on page 7-36

7 RF Toolbox Examples

7-174

Operations with RF Data Objects
This example shows you how to manipulate RF data directly using rfdata objects. First, you create
an rfdata.data object by reading in the S-parameters of a two-port passive network stored in the
Touchstone® format data file, passive.s2p. Next, you create a circuit object, rfckt.amplifier,
and you update the properties of this object using three data objects.

Read Touchstone® Data File

Use the read method of the rfdata.data object to read the Touchstone data file passive.s2p.
The parameters in this data file are the 50-Ohm S-parameters of a 2-port passive network at
frequencies ranging from 315 kHz to 6.0 GHz.

data = rfdata.data;
data = read(data,'passive.s2p')

data =
 rfdata.data with properties:

 Freq: [202x1 double]
 S_Parameters: [2x2x202 double]
 GroupDelay: [202x1 double]
 NF: [202x1 double]
 OIP3: [202x1 double]
 Z0: 50.0000 + 0.0000i
 ZS: 50.0000 + 0.0000i
 ZL: 50.0000 + 0.0000i
 IntpType: 'Linear'
 Name: 'Data object'

Use the extract method of the rfdata.data object to get other network parameters. For example,
here are the frequencies, 75-Ohm S-parameters, and Y-parameters which are converted from the
original 50-Ohm S-parameters in passive.s2p data file.

[s_params,freq] = extract(data,'S_PARAMETERS',75);
y_params = extract(data,'Y_PARAMETERS');

Use the RF utility function, smithplot to plot the 75-Ohm S11 on a Smith chart.

s11 = s_params(1,1,:);
figure
smithplot(freq, s11(:))

 Operations with RF Data Objects

7-175

Here are the four 75-Ohm S-parameters and four Y-parameters at 6.0 GHz, the last frequency.

f = freq(end)

f = 6.0000e+09

s = s_params(:,:,end)

s = 2×2 complex

 -0.0764 - 0.5401i 0.6087 - 0.3018i
 0.6094 - 0.3020i -0.1211 - 0.5223i

y = y_params(:,:,end)

y = 2×2 complex

 0.0210 + 0.0252i -0.0215 - 0.0184i
 -0.0215 - 0.0185i 0.0224 + 0.0266i

Create RF Data Objects for Amplifier with Your Own Data

In this example, you create a circuit object, rfckt.amplifier. Then you create three data objects
and use them to update the properties of the circuit object.

The rfckt.amplifier object has properties for network parameters, noise data and nonlinear data:

7 RF Toolbox Examples

7-176

• NetworkData is an rfdata.network object for network parameters.
• NoiseData is for noise parameters which could be a scalar NF (dB), an rfdata.noise, or an

rfdata.nf object.
• NonlinearData is for nonlinear parameters which could be a scalar OIP3 (dBm), an

rfdata.power, or an rfdata.ip3 object.

By default, these properties of rfckt.amplifier contain data from the default.amp data file.
NetworkData is an rfdata.network object that contains 50-Ohm 2-port S-Parameters at 191
frequencies ranging from 1.0 GHz to 2.9 GHz. NoiseData is an rfdata.noise object that contains
spot noise data at 9 frequencies ranging from 1.9 GHz to 2.48 GHz. The NonlinearData parameter
is an rfdata.power object that contains Pin/Pout data at 2.1 GHz.

amp = rfckt.amplifier

amp =
 rfckt.amplifier with properties:

 NoiseData: [1x1 rfdata.noise]
 NonlinearData: [1x1 rfdata.power]
 IntpType: 'Linear'
 NetworkData: [1x1 rfdata.network]
 nPort: 2
 AnalyzedResult: [1x1 rfdata.data]
 Name: 'Amplifier'

Use the following code to create an rfdata.network object that contains 2-port Y-parameters of an
amplifier at 2.08 GHz, 2.10 GHz and 2.15 GHz. Later in this example, you use this data object to
update the NetworkData property of the amplifier object.

f = [2.08 2.10 2.15] * 1.0e9;
y(:,:,1) = [-.0090-.0104i, .0013+.0018i; -.2947+.2961i, .0252+.0075i];
y(:,:,2) = [-.0086-.0047i, .0014+.0019i; -.3047+.3083i, .0251+.0086i];
y(:,:,3) = [-.0051+.0130i, .0017+.0020i; -.3335+.3861i, .0282+.0110i];
netdata = rfdata.network('Type','Y_PARAMETERS','Freq',f,'Data',y)

netdata =
 rfdata.network with properties:

 Type: 'Y_PARAMETERS'
 Freq: [3x1 double]
 Data: [2x2x3 double]
 Z0: 50.0000 + 0.0000i
 Name: 'Network parameters'

Use the following code to create an rfdata.nf object that contains noise figures of the amplifier, in
dB, at seven frequencies ranging from 1.93 GHz to 2.40 GHz. Later in this example, you use this data
object to update the NoiseData property of the amplifier object.

f = [1.93 2.06 2.08 2.10 2.15 2.3 2.4] * 1.0e+009;
nf = [12.4521 13.2466 13.6853 14.0612 13.4111 12.9499 13.3244];
nfdata = rfdata.nf('Freq',f,'Data',nf)

nfdata =
 rfdata.nf with properties:

 Operations with RF Data Objects

7-177

 Freq: [7x1 double]
 Data: [7x1 double]
 Name: 'Noise figure'

Use the following code to create an rfdata.ip3 object that contains the output third-order intercept
points of the amplifier, which is 8.45 watts at 2.1 GHz. Later in this example, you use this data object
to update the NonlinearData property of the amplifier object.

ip3data = rfdata.ip3('Type','OIP3','Freq',2.1e9,'Data',8.45)

ip3data =
 rfdata.ip3 with properties:

 Type: 'OIP3'
 Freq: 2.1000e+09
 Data: 8.4500
 Name: '3rd order intercept'

Use the following code to update the properties of the amplifier object with three data objects you
created in the previous steps. To get a good amplifier object, the data in these data objects must be
accurate. These data could be obtained from RF measurements, or circuit simulation using other
tools.

amp.NetworkData = netdata;
amp.NoiseData = nfdata;
amp.NonlinearData = ip3data

amp =
 rfckt.amplifier with properties:

 NoiseData: [1x1 rfdata.nf]
 NonlinearData: [1x1 rfdata.ip3]
 IntpType: 'Linear'
 NetworkData: [1x1 rfdata.network]
 nPort: 2
 AnalyzedResult: [1x1 rfdata.data]
 Name: 'Amplifier'

See Also

More About
• “Create RF Objects” on page 2-2

7 RF Toolbox Examples

7-178

Design IF Butterworth Bandpass Filter
This example shows how to design an Intermediate Frequency (IF) Butterworth bandpass filter with a
center frequency of 400 MHz, bandwidth of 5 MHz, and Insertion Loss (IL) of 1dB [1] on page 7-0 .

Account for Mismatch/Insertion Loss (IL)

Practical circuits suffer a certain degree of mismatch. Mismatch happens when an unmatched circuit
is connected to an RF source leading to reflections that result in a loss of power delivered to the
circuit. You can use IL to define this mismatch. Calculate the load impedance mismatch to account for
the given IL. The IL and normalized load impedance (ZL) are related as follows [2] on page 7-0 ,[3]
on page 7-0 :

IL (dB) = -10*log10(1-| γin |^2) = -10*log10(4*ZL/(1+ZL)^2)

The roots of the resulting polynomial return the value of normalized load impedance. The
unnormalized values are 132.986 Ohms and 18.799 Ohms. Choose the higher value for the filter
design to account for the IL.

syms ZL IL
eqn = -10*log10(4*ZL/(1+ZL)^2) - IL == 0;
[solx, ~, ~] = solve(eqn,ZL,'ReturnConditions', true);
IL_desired_dB = 1;
Zload = double(subs(solx,IL,IL_desired_dB))*50;

Load impedance:

ZL = Zload(2);

Design Filter

Use rffilter to design the filter for the desired specifications.

Fcenter = 400e6;
Bwpass = 5e6;
if_filter = rffilter('ResponseType','Bandpass',...
 'FilterType','Butterworth','FilterOrder',4,...
 'PassbandAttenuation',10*log10(2),...
 'Implementation','Transfer function',...
 'PassbandFrequency',[Fcenter-Bwpass/2 Fcenter+Bwpass/2],'Zout',ZL);

Plot S-parameters and Group Delay of Filter

Calculate S-parameters.

freq = linspace(370e6,410e6,2001);
Sf = sparameters(if_filter, freq);
figure;
line = rfplot(Sf);
lgd = legend;
lgd.Location = "best";
[~,freq_index] = min(abs(freq-Fcenter));
datatip(line(3),'DataIndex',freq_index);

 Design IF Butterworth Bandpass Filter

7-179

A datatip shows a 1dB IL at Fcenter = 400 MHz.

Calculate groupdelay:

gd = groupdelay(if_filter, freq);
figure;
plot(freq/1e6, gd);
xlabel('Frequency (MHz)');
ylabel('Group delay (s)');
grid on;

7 RF Toolbox Examples

7-180

Insert Filter into rfbudget Object

An rffilter object can be inserted directly into an rfbudget object to perform budget analysis.

rfb = rfbudget(if_filter,Fcenter,-30,Bwpass)

rfb =
 rfbudget with properties:

 Elements: [1x1 rffilter]
 InputFrequency: 400 MHz
 AvailableInputPower: -30 dBm
 SignalBandwidth: 5 MHz
 Solver: Friis
 AutoUpdate: true

 Analysis Results
 OutputFrequency: 400 (MHz)
 OutputPower: -31 (dBm)
 TransducerGain: -1 (dB)
 NF: 0 (dB)
 IIP2: [] (dBm)
 OIP2: [] (dBm)
 IIP3: Inf (dBm)
 OIP3: Inf (dBm)
 SNR: 76.99 (dB)

 Design IF Butterworth Bandpass Filter

7-181

References

[1] Hongbao Zhou, Bin Luo. " Design and budget analysis of RF receiver of 5.8GHz ETC reader"
Published at Communication Technology (ICCT), 2010 12th IEEE International Conference, Nanjing,
China, November 2010.

[2] Electronic Filter Analysis and Synthesis, Michael G. Ellis, Sr., Artech House, Chapter 7.

[3] RF Circuit Design, R. Ludwig, G. Bogdanov, Pearson Education, Chapter 2.

See Also

“Superheterodyne Receiver Using RF Budget Analyzer App” on page 7-2

See Also

More About
• “Bandpass Filter Response” on page 7-24

7 RF Toolbox Examples

7-182

Passivity: Test, Visualize, and Enforce Passivity of Rational Fit
Output

This example shows how to test, visualize, and enforce the passivity of output from the rationalfit
function.

S-Parameter Data Passivity

Time-domain analysis and simulation depends critically on being able to convert frequency-domain S-
parameter data into causal, stable, and passive time-domain representations. Because the
rationalfit function guarantees that all poles are in the left half plane, rationalfit output is
both stable and causal by construction. The problem is passivity.

N-port S-parameter data represents a frequency-dependent transfer function H(f). You can create an
S-parameters object in RF Toolbox™ by reading a Touchstone® file, such as passive.s2p, into the
sparameters function.

You can use the ispassive function to check the passivity of the S-parameter data, and the
passivity function to plot the 2-norm of the N x N matrices H(f) at each data frequency.

S = sparameters('passive.s2p');
ispassive(S)

ans = logical
 1

passivity(S)

 Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output

7-183

Testing and Visualizing rationalfit Output Passivity

The rationalfit function converts N-port sparameter data, S into an NxN matrix of
rfmodel.rational objects. Using the ispassive function on the N x N fit output reports that even
if input data S is passive, the output fit is not passive. In other words, the norm H(f) is greater than
one at some frequency in the range [0,Inf].

The passivity function takes an N x N fit as input and plots its passivity. This is a plot of the upper
bound of the norm(H(f)) on [0,Inf], also known as the H-infinity norm.

fit = rationalfit(S);
ispassive(fit)

ans = logical
 0

passivity(fit)

7 RF Toolbox Examples

7-184

The makepassive function takes as input an N x N array of fit objects and also the original S-
parameter data, and produces a passive fit by using convex optimization techniques to optimally
match the data of the S-parameter input S while satisfying passivity constraints. The residues C and
feedthrough matrix D of the output pfit are modified, but the poles A of the output pfit are identical
to the poles A of the input fit.

pfit = makepassive(fit,S,'Display','on');

ITER H-INFTY NORM FREQUENCY ERRDB CONSTRAINTS
0 1 + 1.791e-02 17.6816 GHz -40.4702
1 1 + 2.877e-04 275.347 MHz -40.9167 5
2 1 + 9.261e-05 365.665 MHz -40.9092 7
3 1 - 3.355e-07 368.266 MHz -40.906 9

ispassive(pfit)

ans = logical
 1

passivity(pfit)

 Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output

7-185

all(vertcat(pfit(:).A) == vertcat(fit(:).A))

ans = logical
 1

Start makepassive with Prescribed Poles and Zero C and D

To demonstrate that only C and D are modified by makepassive, one can zero out C and D and re-
run makepassive. The output, pfit still has the same poles as the input fit. The differences between
pfit and pfit2 arise because of the different starting points of the convex optimizations.

One can use this feature of the makepassive function to produce a passive fit from a prescribed set
of poles without any idea of starting C and D.

for k = 1:numel(fit)
 fit(k).C(:) = 0;
 fit(k).D(:) = 0;
end
pfit2 = makepassive(fit,S);
passivity(pfit2)

7 RF Toolbox Examples

7-186

all(vertcat(pfit2(:).A) == vertcat(fit(:).A))

ans = logical
 1

Generate Equivalent SPICE Circuit from Passive Fit

The generateSPICE function takes a passive fit and generates an equivalent circuit as a SPICE
subckt file. The input fit is an N x N array of rfmodel.rational objects as returned by rationalfit
with an S-parameters object as input. The generated file is a SPICE model constructed solely of
passive R, L, C elements and controlled source elements E, F, G, and H.

generateSPICE(pfit2,'mypassive.ckt')
type mypassive.ckt

* Equivalent circuit model for mypassive.ckt
.SUBCKT mypassive po1 po2
Vsp1 po1 p1 0
Vsr1 p1 pr1 0
Rp1 pr1 0 50
Ru1 u1 0 50
Fr1 u1 0 Vsr1 -1
Fu1 u1 0 Vsp1 -1
Ry1 y1 0 1
Gy1 p1 0 y1 0 -0.02
Vsp2 po2 p2 0
Vsr2 p2 pr2 0

 Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output

7-187

Rp2 pr2 0 50
Ru2 u2 0 50
Fr2 u2 0 Vsr2 -1
Fu2 u2 0 Vsp2 -1
Ry2 y2 0 1
Gy2 p2 0 y2 0 -0.02
Rx1 x1 0 1
Cx1 x1 0 2.73023889928382e-12
Gx1_1 x1 0 u1 0 -2.0604322836562
Rx2 x2 0 1
Cx2 x2 0 7.77758884882576e-12
Gx2_1 x2 0 u1 0 -2.91723139773995
Rx3 x3 0 1
Cx3 x3 0 2.29141629980399e-11
Gx3_1 x3 0 u1 0 -0.544080279799492
Rx4 x4 0 1
Cx4 x4 0 9.31845201627123e-11
Gx4_1 x4 0 u1 0 -0.654514239023566
Rx5 x5 0 1
Cx5 x5 0 4.89917764982128e-10
Gx5_1 x5 0 u1 0 -0.0811504179937328
Rx6 x6 0 1
Fxc6_7 x6 0 Vx7 18.7374939264546
Cx6 x6 xm6 3.95175907226011e-09
Vx6 xm6 0 0
Gx6_1 x6 0 u1 0 -0.0922182973334184
Rx7 x7 0 1
Fxc7_6 x7 0 Vx6 -0.0838145000452979
Cx7 x7 xm7 3.95175907226011e-09
Vx7 xm7 0 0
Gx7_1 x7 0 u1 0 0.00772923048602909
Rx8 x8 0 1
Cx8 x8 0 1.25490425570277e-08
Gx8_1 x8 0 u1 0 -0.947644178687728
Rx9 x9 0 1
Cx9 x9 0 2.73023889928382e-12
Gx9_2 x9 0 u2 0 -2.08391349356345
Rx10 x10 0 1
Cx10 x10 0 7.77758884882576e-12
Gx10_2 x10 0 u2 0 -2.92729174503047
Rx11 x11 0 1
Cx11 x11 0 2.29141629980399e-11
Gx11_2 x11 0 u2 0 -0.607553041582295
Rx12 x12 0 1
Cx12 x12 0 9.31845201627123e-11
Gx12_2 x12 0 u2 0 -0.692661287906845
Rx13 x13 0 1
Cx13 x13 0 4.89917764982128e-10
Gx13_2 x13 0 u2 0 -0.0860906329176697
Rx14 x14 0 1
Fxc14_15 x14 0 Vx15 18.3710776581628
Cx14 x14 xm14 3.95175907226011e-09
Vx14 xm14 0 0
Gx14_2 x14 0 u2 0 -0.0931988268714147
Rx15 x15 0 1
Fxc15_14 x15 0 Vx14 -0.0854862036277875
Cx15 x15 xm15 3.95175907226011e-09
Vx15 xm15 0 0

7 RF Toolbox Examples

7-188

Gx15_2 x15 0 u2 0 0.00796721389180066
Rx16 x16 0 1
Cx16 x16 0 1.25490425570277e-08
Gx16_2 x16 0 u2 0 -0.948031806763662
Gyc1_1 y1 0 x1 0 -0.138989062060755
Gyc1_2 y1 0 x2 0 -0.0228686621642854
Gyc1_3 y1 0 x3 0 -1
Gyc1_4 y1 0 x4 0 -1
Gyc1_5 y1 0 x5 0 1
Gyc1_6 y1 0 x6 0 -1
Gyc1_7 y1 0 x7 0 -1
Gyc1_8 y1 0 x8 0 0.999804082821414
Gyc1_9 y1 0 x9 0 1
Gyc1_10 y1 0 x10 0 -1
Gyc1_11 y1 0 x11 0 0.809871147230155
Gyc1_12 y1 0 x12 0 0.941820669759408
Gyc1_13 y1 0 x13 0 -0.93505410807767
Gyc1_14 y1 0 x14 0 0.988848655186271
Gyc1_15 y1 0 x15 0 0.953486776095966
Gyc1_16 y1 0 x16 0 -1
Gyd1_1 y1 0 u1 0 0.603086046309566
Gyd1_2 y1 0 u2 0 -0.352316736727294
Gyc2_1 y2 0 x1 0 1
Gyc2_2 y2 0 x2 0 -1
Gyc2_3 y2 0 x3 0 0.900754754325028
Gyc2_4 y2 0 x4 0 0.996964039787101
Gyc2_5 y2 0 x5 0 -0.991558685615042
Gyc2_6 y2 0 x6 0 0.997618153616112
Gyc2_7 y2 0 x7 0 0.96120773249802
Gyc2_8 y2 0 x8 0 -1
Gyc2_9 y2 0 x9 0 -0.265675747275503
Gyc2_10 y2 0 x10 0 0.0684888346158697
Gyc2_11 y2 0 x11 0 -1
Gyc2_12 y2 0 x12 0 -1
Gyc2_13 y2 0 x13 0 1
Gyc2_14 y2 0 x14 0 -1
Gyc2_15 y2 0 x15 0 -1
Gyc2_16 y2 0 x16 0 0.999975807752118
Gyd2_1 y2 0 u1 0 -0.337219048696913
Gyd2_2 y2 0 u2 0 0.700211318479778
.ENDS

See Also

More About
• “Using 'NPoles' Parameter With rationalfit” on page 7-73
• “Using 'Weight' Parameter With rationalfit” on page 7-77
• “Using 'DelayFactor' Parameter With rationalfit” on page 7-83

 Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output

7-189

Design, Visualize and Explore Inverse Chebyshev filter - I
This example shows how to determine the transfer function for a fifth-order inverse Chebyshev low-
pass filter with 1 dB passband attenuation, cutoff frequency of 1 rad/sec, and a minimum attenuation
of 50 dB in the stopband. Determine the amplitude response at 2 rad/sec [1].

The rffilter object is used to design a RF Filter. A filter requires a minimum set of parameters
for it to be completely defined. Refer to the table in the rffilter documentation page which reflects
this set of required parameters. Each set of parameters result in its corresponding syntax. Input
these parameters as name-value pairs to rffilter to design the specified filter. Note that the
parameters which are required but are not defined assume default values.

After initialization of an rffilter object, the property DesignData contains the complete solution
of the filter designed. It is a structure which contains fields such as the computed factorized
polynomials for the construction of the transfer function.

Design Chebyshev Type II filter

N = 5; % Filter order
Fp = 1/(2*pi); % Passband cutoff frequency
Ap = 1; % Passband attenuation
As = 50; % Stopband attenuation

Use rffilter object to create a desired filter. The only implementation type for Inverse Chebyshev
is 'Transfer function'.

r = rffilter('FilterType','InverseChebyshev','ResponseType','Lowpass', ...
 'Implementation','Transfer function','FilterOrder',N, ...
 'PassbandFrequency',Fp,'StopbandAttenuation',As, ...
 'PassbandAttenuation',Ap);

Generate and visualize transfer function polynomial

Use tf function to generate transfer function polynomials.

[numerator, denominator] = tf(r);
format long g

Display Numerator21 polynomial coefficients.

disp('Numerator polynomial coefficients of Transfer function');

Numerator polynomial coefficients of Transfer function

disp(numerator{2,1});

 Columns 1 through 3

 0.0347736250821381 0 0.672768334081369

 Columns 4 through 5

 0 2.6032214373595

Display Denominator polynomial coefficients.

disp('Denominator polynomial coefficients of Transfer function');

7 RF Toolbox Examples

7-190

Denominator polynomial coefficients of Transfer function

disp(denominator);

 Columns 1 through 3

 1 3.81150884154936 7.2631952221038

 Columns 4 through 6

 8.61344575257214 6.42982763112227 2.6032214373595

Optionally, use Control System Toolbox to visualize all transfer functions.

G_s = tf(numerator,denominator)

G_s =

 From input 1 to output...
 s^5
 1: --
 s^5 + 3.812 s^4 + 7.263 s^3 + 8.613 s^2 + 6.43 s + 2.603

 0.03477 s^4 + 0.6728 s^2 + 2.603
 2: --
 s^5 + 3.812 s^4 + 7.263 s^3 + 8.613 s^2 + 6.43 s + 2.603

 From input 2 to output...
 0.03477 s^4 + 0.6728 s^2 + 2.603
 1: --
 s^5 + 3.812 s^4 + 7.263 s^3 + 8.613 s^2 + 6.43 s + 2.603

 s^5
 2: --
 s^5 + 3.812 s^4 + 7.263 s^3 + 8.613 s^2 + 6.43 s + 2.603

Continuous-time transfer function.

Visualize amplitude response of filter

frequencies = linspace(0,1,1001);
Sparam = sparameters(r, frequencies);

Note: S-parameters computes the transfer function using quadratic (lowpass/highpass) or quartic
(bandpass/bandstop) factorized forms. These factors are used to construct the polynomials. The
polynomial form is numerically unstable for larger filter order so the preferred form is the factorized
quadratic/quartic forms. These factorized parts are present in r.DesignData. For example, the
numerator21 can be accessed using r.DesignData.Numerator21.

l = rfplot(Sparam,2,1);

 Design, Visualize and Explore Inverse Chebyshev filter - I

7-191

Amplitude response of filter at specified frequency

freq = 2/(2*pi);
hold on;
setrfplot('noengunits',false);

Note: To use rfplot and plot on the same figure use setrfplot. Type 'help setrfplot' in command
window for information.

plot(freq*ones(1,101),linspace(-120,20,101));
setrfplot('engunits',false);
[~,freq_index]= min(abs(frequencies-freq));
datatip(l,'DataIndex',freq_index);

7 RF Toolbox Examples

7-192

Using the datatip, the magnitude at 2 rad/sec is found to be -36.59 dB.

Evaluate the exact value at 2 rad/sec.

S_freq = sparameters(r,freq);

As_freq = 20*log10(abs(rfparam(S_freq,2,1)));
sprintf('Amplitude response at 2 rad/sec is %d dB',As_freq)

ans =
'Amplitude response at 2 rad/sec is -3.668925e+01 dB'

Calculate stopband frequency at As

Fs = r.DesignData.Auxiliary.Wx*r.PassbandFrequency;
sprintf('Stopband frequency at -%d dB is: %d Hz',As, Fs)

ans =
'Stopband frequency at -50 dB is: 3.500241e-01 Hz'

References
[1] Ellis, Michael G. Electronic Filter Analysis and Synthesis. Boston: Artech House, 1994.

 Design, Visualize and Explore Inverse Chebyshev filter - I

7-193

See Also

More About
• “Design, visualize and explore Inverse Chebyshev filter - II” on page 7-195
• “Design IF Butterworth Bandpass Filter” on page 7-179

7 RF Toolbox Examples

7-194

Design, visualize and explore Inverse Chebyshev filter - II
This example shows how to design a fourth-order inverse Chebyshev low-pass filter with stopband
frequency of 10000 rad/sec, and epsilon of 0.01 (please see the reference section) using rffilter.
This rffilter could be used in a circuit or in a rfbudget object.

The rffilter object is used to design a RF filter. A filter requires a minimum set for parameters to
completely define it.

The parameters to design an inverse Chebyshev filter can be one of the following:

• Filter order, Passband frequency, Passband and Stopband Attenuation
• Passband and Stopband frequencies, Passband and Stopband Attenuation
• Filter order, Stopband frequency, Stopband Attenuation

Design Filter

N = 4; % Filter order
Fs = 1000/(2*pi); % Stopband frequency
epsilon = 0.01;
Rs = 10*log10((1+epsilon^2)/epsilon^2); % Stopband attenuation

Use the first set of parameters to define the filter.

r = rffilter('FilterType','InverseChebyshev','ResponseType','Lowpass', ...
 'Implementation','Transfer function','FilterOrder',N, ...
 'PassbandFrequency',Fs,'PassbandAttenuation',Rs, ...
 'StopbandAttenuation',Rs);

Note: Alternative, you can also use the third set of parameters to design the same filter:

r = rffilter('FilterType','InverseChebyshev','ResponseType','Lowpass', ...
'Implementation','Transfer function','FilterOrder',N, ...
'StopbandFrequency',Fs,'StopbandAttenuation',Rs);

The limitation of this parameter set is that it assumes the passband attenuation to be fixed at
10*log10(2) dB.

Visualize magnitude response, phase response, and phase delay of filter

frequencies = linspace(0,2*Fs,1001);
rfplot(r, frequencies);

 Design, visualize and explore Inverse Chebyshev filter - II

7-195

7 RF Toolbox Examples

7-196

 Design, visualize and explore Inverse Chebyshev filter - II

7-197

Optionally, you can also use Signal Processing Toolbox to visualize the analog filter using:

freqs(numerator{2,1},denominator)

Find zeros, poles, and gain

[z,p,k] = zpk(r);

You can obtain zeros, poles, and gain of Transfer function (S21) by:

format long g
zeros_21 = z{2,1}

zeros_21 = 4×1 complex

 0 + 1082.39220029239i
 0 - 1082.39220029239i
 0 + 2613.12592975275i
 0 - 2613.12592975275i

poles_21 = p % Same denominator for S11, S12, S21 and S22

poles_21 = 4×1 complex

 -171.158733950657 + 476.096694464131i

7 RF Toolbox Examples

7-198

 -171.158733950657 - 476.096694464131i
 -504.530434776367 + 240.786480832184i
 -504.530434776367 - 240.786480832184i

k_21 = k{2,1}

k_21 =
 0.00999950003749688

View transfer function in factorized form

View these factor forms directly from the filter r.

disp('Numerator of Transfer function as factors:');

Numerator of Transfer function as factors:

r.DesignData.Numerator21

ans = 2×3

 1 0 1171572.87525381
 0.00999950003749688 0 68280.8572899443

disp('Denominator of Transfer function as factors:');

Denominator of Transfer function as factors:

r.DesignData.Denominator

ans = 2×3

 1 342.317467901314 255963.374687264
 1 1009.06086955273 312529.088967178

Alternatively, use |zpk| from Control System Toolbox to view the transfer function in factorized form.

G_s = zpk(zeros_21,poles_21,k_21)

G_s =

 0.0099995 (s^2 + 1.172e06) (s^2 + 6.828e06)

 (s^2 + 1009s + 3.125e05) (s^2 + 342.3s + 2.56e05)

Continuous-time zero/pole/gain model.

References
[1] Paarmann, L. D. Design and Analysis of Analog Filters: A Signal Processing Perspective. SECS

617. Boston: Kluwer Academic Publishers, 2001.

 Design, visualize and explore Inverse Chebyshev filter - II

7-199

See Also

More About
• “Design, Visualize and Explore Inverse Chebyshev filter - I” on page 7-190
• “Design IF Butterworth Bandpass Filter” on page 7-179

7 RF Toolbox Examples

7-200

Design Matching Networks for Passive Multiport Network
This example shows how to design matching networks for 16-port passive network at 39 GHz for 5G
mmWave systems. Matching networks are designed independently for each port, and each generated
matching network is intended to function between two 1-port terminations.

Design Multiport Passive Network

Compute the S-Parameters of a patch antenna array designed at 39 GHz. Load the
sparams_patchArray.mat file. The s_params_circ_array function is obtained from the
supporting file designmultiport.mlx.

Fcenter = 39e9;
load('sparams_patchArray.mat')
Sparam_array = s_params_circ_array;
show(patchArray)
view([90 0])

Determine the index corresponding to the center frequency.

freq = Sparam_array.Frequencies;
fIndex = find(freq == Fcenter);

 Design Matching Networks for Passive Multiport Network

7-201

Create Matching Networks

Generate matching networks for each corresponding port independently, with a Loaded Q of 20 and
configure the topology to 'Pi'. This Q-factor is aligned with half power bandwidth of the patch antenna
array, which is approximately 2 GHz.

Define the number of ports in the network and specify the termination impedance.

numport = s_params_circ_array.NumPorts;
ZT = 50;
loadedQ = 20;
topology = 'Pi';
for i = 1 : numport
 % reflection coefficient/Sii
 gam_array = s_params_circ_array.Parameters(i,i,fIndex);
 % Load impedance
 Zout = gamma2z(gam_array);
 % Matching networks generation
 match_net(i) = matchingnetwork('SourceImpedance', ZT, ...
 'LoadImpedance', Zout, 'CenterFrequency', Fcenter, ...
 'LoadedQ', loadedQ, 'Components', topology);
end

The source is connected to the component located on left of the matching network circuit and the
load is connected to the component connected to the right of the matching network circuit. For the
matching networks generated, the source is terminated with ZT (50 Ohm) and the load impedance is
the impedance seen at the ith-port given by Zout.

View and Select Circuits

Select a topology from the sixteen matchingnetwork objects. To get an overview of the available
circuits, see circuitDescriptions function.

In this example, a Shunt C-Series L-Shunt C topology is used. If this topology is not available in your
network, use the best available matching network circuit.

selectedCircuits = repmat(circuit,1,numport);
cIndex = zeros(1,numport);

View the list of circuits generated.

for i = 1:numel(match_net)
 c = circuitDescriptions(match_net(i));
 % Perform a text search to choose the circuit with Shunt C-Series L-Shunt C topology
 Index = strcmp(c.component1Type,"Shunt C") & ...
 strcmp(c.component2Type,"Series L") & ...
 strcmp(c.component3Type,"Shunt C");
 if any(Index)
 % ShuntC-SeriesL-ShuntC topology
 cIndex(i) = find(Index, 1, 'first');
 selectedCircuits(i) = match_net(i).Circuit(cIndex(i));
 else
 % Best available matchingnetwork
 selectedCircuits(i) = match_net(i).Circuit(1);
 end
 selectedCircuits(i).Name = "N"+i;
end

7 RF Toolbox Examples

7-202

To view the performance of a selected matching network circuit, use rfplot. For instance, to plot
the performance of the first matching network for the circuit with Shunt C-Series L-Shunt C topology
type this command.

rfplot(match_net(1),freq,cIndex(1));

Add Matching Network Circuits to 16-Port Network

Create Circuit Object

Create a circuit object and an n-port object for the 16-port network.

ckt = circuit('patchArray');
array_net = nport(Sparam_array);

In this example, number of circuit nodes are shown as 17, as nodes 1 through 16 will be used for
adding the matching networks.

cktnodes = (1+numport):(numport+numport);

Add the n-port object to circuit object.

add(ckt, cktnodes, array_net);

View parent nodes of the 16-port network.

disp(array_net)

 Design Matching Networks for Passive Multiport Network

7-203

 nport: N-port element

 NetworkData: [1×1 sparameters]
 Name: 'Sparams'
 NumPorts: 16
 Terminals: {1×32 cell}
 ParentNodes: [17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 ParentPath: 'patchArray'

An illustration of the circuit object with 16-port n-port is provided.

7 RF Toolbox Examples

7-204

Initialize the ports.

ports = cell(1,numport);

Add each matching network circuit to its corresponding port one at a time. Port numbers for
corresponding matching network circuit are also generated.

 Design Matching Networks for Passive Multiport Network

7-205

for i=1:length(selectedCircuits)
 add(ckt, [i, 0, i+numport, 0], selectedCircuits(i), ...
 {'p1+', 'p1-', 'p2+', 'p2-'});
 ports{i} = [i, 0];
end
% ports = arrayfun(@(x) [x 0],1:10,'UniformOutput',false);

Use the setports function to define the ports for each of the circuits.

setports(ckt,ports{:});

An illustration of the circuit object with n-port and matching network circuits are provided.

7 RF Toolbox Examples

7-206

 Design Matching Networks for Passive Multiport Network

7-207

Generate and Plot S-Parameters

Generate and plot the S-Parameters of the passive 16-port matching network.

Sparam = sparameters(ckt, freq);

Plot Frequency Responses

Plot the frequency response of the 16-port network before matching.

figure; rfplot(s_params_circ_array); legend off

Plot the frequency response of the 16-port network after matching.

figure; rfplot(Sparam); legend off

7 RF Toolbox Examples

7-208

See Also

More About
• “Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network”

on page 7-216

 Design Matching Networks for Passive Multiport Network

7-209

Frequency Sweep in RF Budget Analysis
This example shows how to sweep through frequency-dependent properties of the elements in an RF
Budget Analysis.

Use the nport and amplifier objects to specify the 2-port RF elements in the design and build an
RF budget element by cascading the elements together into an RF system with rfbudget.

Building Elements of RF Budget Cascade

Build and parameterize each of the 2-port RF elements.

f1 = nport('RFBudget_RF.s2p','RFBandpassFilter');
a1 = amplifier('Name','RFAmplifier', ...
 'Gain',11.53, ...
 'NF',1.53, ...
 'OIP3',35);

Use rfbudget object to cascade the elements with input frequency 2.1 GHz, input power -30 dBm,
and input bandwidth 45 MHz. This example cascades a filter and an amplifier.

b = rfbudget('Elements',[f1 a1], ...
 'InputFrequency',2.1e9, ...
 'AvailableInputPower',-30, ...
 'SignalBandwidth',45e6);

Read Frequency-Dependent Noise Figure

Read frequency-dependent Noise Figure (NF) values of the amplifier from the data-sheet. A similar
approach can be followed if the Output third-order intercept (OIP3) or Gain is frequency-dependent.

% Inputs from the data-sheet
freq_datasheet = [1.98;1.99;2.0;2.01;2.02;2.03;2.04;2.05;2.06;2.07;2.08;....
 2.09;2.10].*1e9;

NF_datasheet = [1.0000;1.0442;1.0883;1.1325;1.1767;1.2208;1.2650;1.3092;...
 1.3533;1.3975;1.4417;1.4858;1.5300];

% Interpolate the amplifier NF data based on existing filter frequencies
Freq = f1.NetworkData.Frequencies;
RFAmplifier_NF = interp1(freq_datasheet,NF_datasheet,Freq);

Plot RF Budget Results Versus Input Frequency

Loop over the desired frequencies, by setting NF of the RF Amplifier element in the rfbudget object.

TotalNF = zeros(size(Freq));
for i = 1:numel(Freq)
 b.InputFrequency = Freq(i);

 % Adjust frequency-dependent NF of the RF Amplifier
 elems(2).NF = RFAmplifier_NF(i);

 % Compute NF of the cascade
 TotalNF(i) = b.NF(end);
end

7 RF Toolbox Examples

7-210

plot(Freq/1e9,TotalNF)
grid on;
xlabel('Frequency (GHz)')
ylabel('NF (dB)')
title('Noise Figure vs. Input Frequency')

See Also

More About
• “RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF” on page 7-223
• “Visualizing RF Budget Analysis Over Bandwidth” on page 7-16

 Frequency Sweep in RF Budget Analysis

7-211

Using Rational Object to Fit S-Parameters
This example shows how to use the rational object to create a rational fit to S-parameter data, and
the various properties and methods that are included in the rational object.

Create rational object

Read in the sparameters, and create the rational object from them. The rational function
automatically fits all entries of the S-parameter matrices.

S = sparameters('sawfilter.s2p')

S =
 sparameters: S-parameters object

 NumPorts: 2
 Frequencies: [334x1 double]
 Parameters: [2x2x334 double]
 Impedance: 50

 rfparam(obj,i,j) returns S-parameter Sij

r = rational(S)

r =
 rational with properties:

 NumPorts: 2
 NumPoles: 32
 Poles: [32x1 double]
 Residues: [2x2x32 double]
 DirectTerm: [2x2 double]
 ErrDB: -40.9746

With the default settings on this example, the rational function achieves an accuracy of about -26 dB,
using 30 poles. By construction, the rational object is causal, with a non-zero direct term.

Compare fit with original data

Generate the frequency response from the rational object, and compare one of the entries with the
original data.

resp = freqresp(r, S.Frequencies);
plot(S.Frequencies, real(rfparam(S, 1, 1)), ...
 S.Frequencies, real(squeeze(resp(1,1,:))))

7 RF Toolbox Examples

7-212

Limit number of poles

Redo the fit, limiting the number of poles to a maximum of 5. The rational object may use fewer poles
than specified. Notice that the quality of the fit is degraded as opposed to the original 30-pole fit.

r5 = rational(S, 'MaxPoles', 5)

r5 =
 rational with properties:

 NumPorts: 2
 NumPoles: 4
 Poles: [4x1 double]
 Residues: [2x2x4 double]
 DirectTerm: [2x2 double]
 ErrDB: -0.8145

resp5 = freqresp(r5, S.Frequencies);
plot(S.Frequencies, real(rfparam(S, 1, 1)), ...
 S.Frequencies, real(squeeze(resp5(1,1,:))))

 Using Rational Object to Fit S-Parameters

7-213

Tighten target accuracy

Redo the fit, asking for a tighter tolerance (-60dB), Notice that the fit is significantly improved,
particularly in the stopbands of the sawfilter.

rgood = rational(S, -60)

rgood =
 rational with properties:

 NumPorts: 2
 NumPoles: 149
 Poles: [149x1 double]
 Residues: [2x2x149 double]
 DirectTerm: [2x2 double]
 ErrDB: -53.7018

respgood = freqresp(rgood, S.Frequencies);
plot(S.Frequencies, real(rfparam(S, 1, 1)), ...
 S.Frequencies, real(squeeze(respgood(1,1,:))))

7 RF Toolbox Examples

7-214

See Also

More About
• “Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output” on page 7-183
• “Using 'NPoles' Parameter With rationalfit” on page 7-73
• “Using 'Weight' Parameter With rationalfit” on page 7-77

 Using Rational Object to Fit S-Parameters

7-215

Design Two-Stage Low Noise Amplifier Using Microstrip
Transmission Line Matching Network

This example shows how to use the RF Toolbox™ microstrip transmission line element to design two-
stage low noise amplifier (LNA) for wireless local area network (WLAN) with an input and the output
matching network (MNW) to maximize the power delivered through a 50-ohm load and the system.

Designing an input and output MNW is an important part of the amplifier design. The amplifier in this
example has high gain and low noise. To minimize parasitic effect, this example uses the microstrip
transmission line MNW with a single stub.

Define Microstrip Transmission Line Parameters

The microstrip transmission line parameters are chosen as follows.

• Physical Height of conductor or dielectric thickness — 1.524 mm
• Relative permittivity of dielectric — 3.48 (F/m)
• Loss angle tangent of dielectric — 0.0037
• Physical thickness of microstrip transmission line — 3.5 um

Design Input Matching Network Using Microstrip Transmission Line

The input matching network consists of one shunt stub and one series microstrip transmission line.

Create an input shunt stub microstrip transmission line with the physical length of 8.9 mm.

TL1 = txlineMicrostrip('Width',3.41730e-3,'Height',1.524e-3,'EpsilonR',3.48,'LossTangent',0.0037,...
 'LineLength',8.9e-3,'Thickness',0.0035e-3,'StubMode','Shunt','Termination','Open');

Create an input series microstrip transmission line with the physical length of 14.7 mm.

TL2 = txlineMicrostrip('Width',3.41730e-3,'Height',1.524e-3,'EpsilonR',3.48, 'LossTangent',0.0037,...
 'LineLength',14.7e-3,'Thickness',0.0035e-3);

7 RF Toolbox Examples

7-216

Create and Extract Amplifier Object

Create and extract an amplifier object from the frequency dependent S-parameter data available in
the specified file.

amp1 = nport('f551432p.s2p');

Define the frequency range.

freq = 2e9:10e6:3e9;

Create a two-stage amplifier and plot its S-parameter.

casamp = circuit([amp1,clone(amp1)],'amplifiers'); % amplifier ciruit without MNW.

Plot the S-Parameter over the frequency range from 2 – 3 GHz.

S2 = sparameters(casamp,freq);

Design Output Matching Network Using Microstrip Transmission Line

The output matching network consists of one shunt stub and one series microstrip transmission line.

Create an output series microstrip transmission line with the physical length of 22.47 mm.

TL3 = txlineMicrostrip('Width',3.41730e-3,'Height',1.524e-3,'EpsilonR',3.48, 'LossTangent',0.0037,...
 'LineLength',22.47e-3,'Thickness',0.0035e-3);

Create an output shunt stub microstrip transmission line with the physical length of 5.66 mm.

TL4 = txlineMicrostrip('Width',3.41730e-3, 'Height',1.524e-3,'EpsilonR',3.48, 'LossTangent',0.0037,...
 'LineLength',5.66e-3,'Thickness',0.0035e-3,'StubMode','Shunt','Termination','Open');

Plot Input Reflection Coefficients of Two-Stage LNA

To verify the simultaneous conjugate match at the input of the amplifier, plot the input reflection
coefficients in dB for the amplifier circuit with and without a matching network.

Cascade the circuit elements by adding the input and the output MNW to the two-stage amplifier.

c = circuit([TL1, TL2,clone(amp1),clone(amp1),TL3, TL4]); % two-stage LNA with MNW

Plot the S-parameters and analyze the amplifier with and without the matching networks over the
frequency range of 2.4 – 2.5 GHz.

figure
S3 = sparameters(c,freq);
rfplot(S2,1,1)
hold on;
rfplot(S3,1,1)
legend('|S11| of Two-Stage LNA Without MNW','|S11| of Two-Stage LNA with MNW');
title('Input Reflection Coefficients of Two-Stage LNA');
grid on;

 Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network

7-217

The calculated input return loss for the two-stage LNA with the input MNW is –13.2 dB.

Plot Output Reflection Coefficients of Two-Stage LNA

To verify the simultaneous conjugate match at the output of the amplifier, plot output reflection
coefficients in dB for both the two-stage LNA with and without a MNW.

figure
rfplot(S2,2,2)
hold on;
rfplot(S3,2,2)
legend('|S22| of Without MNW','|S22| of With MNW');
title('Output Reflection Coefficients of Two-Stage LNA');
grid on;

7 RF Toolbox Examples

7-218

The calculated output return loss for the two-stage LNA with the output MNW is 11.5 dB.

Plot Gain and Input Reflection Coefficients of Cascaded LNA

To verify the simultaneous conjugate match at the input and output of the amplifier, plot the input
reflection coefficient and the gain parameters in dB for the two-stage LNA with the MNW.

figure;
rfplot(S3,1,1)
hold on;
rfplot(S3,2,1)

 Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network

7-219

The calculated amplifier gain, S21 is 34.5 dB, and the input reflection coefficient, S11 is –13.1 dB.

Calculate and Plot Complex Load and Source Reflection Coefficients

Calculate and plot all the complex load and source reflection coefficients for simultaneous conjugate
match at all measured frequency data points that are unconditionally stable. These reflection
coefficients are measured at the amplifier interfaces.

figure
smithplot(S3,1,1,'LegendLabels','Measured S11')

7 RF Toolbox Examples

7-220

Calculate Ampifier Noise Figure

Use an rfbudget object to calculate the amplifier noise figure.

b = rfbudget(...
 'Elements',[TL1 TL2 amp1 clone(amp1) TL3 TL4], ...
 'InputFrequency',2.45e9, ...
 'AvailableInputPower',0, ...
 'SignalBandwidth',2e9, ...
 'Solver','Friis', ...
 'AutoUpdate',1);
rfplot(b,'NF')

 Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network

7-221

The amplifier noise figure is calculated as 0.7 dB.

Reference

[1] Maruddani, B, M Ma’sum, E Sandi, Y Taryana, T Daniati, and W Dara. “Design of Two Stage Low
Noise Amplifier at 2.4 - 2.5 GHz Frequency Using Microstrip Line Matching Network Method.”
Journal of Physics: Conference Series 1402 (December 2019): 044031.

See Also

More About
• “Analysis of Coplanar Waveguide Transmission line in X band application” on page 7-229
• “Design Matching Networks for Passive Multiport Network” on page 7-201
• “Design Broadband Matching Networks for Antennas” on page 7-141
• “Impedance Matching of Small Monopole Antenna” on page 7-162

7 RF Toolbox Examples

7-222

RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2
and NF

This example shows how to use the rfbudget object's harmonic balance solver to analyze a low-IF
(intermediate frequency) receiver RF budget for second-order intercept point (IP2), the second-order
intercept point and to compute a more accurate noise figure (NF) that correctly accounts for system
nonlinearity and noise-folding.

Use amplifier and modulator objects to construct the 2-port RF elements in a low-IF receiver
design, along with their output second-order intercept point (OIP2) specifications. You can turn off
the default ideal image reject and channel select filtering in the modulator with the ImageReject
and ChannelSelect logical name-value pairs.

Compute RF budget results by cascading the elements together into an RF system with rfbudget.
The rfbudget object enables design exploration and visualization at the MATLAB command-line. It
also enables automatic RF Blockset model and measurement testbench generation.

a1 = amplifier('Name','RFAmplifier', ...
 'Gain',11.53, ...
 'NF',1.53, ...
 'OIP2',35);

d = modulator('Name','Demodulator', ...
 'Gain',-6, ...
 'NF',4, ...
 'OIP2',50, ...
 'LO',2.03e9, ...
 'ConverterType','Down', ...
 'ImageReject',false, ...
 'ChannelSelect',false);

a2 = amplifier('Name','IFAmplifier', ...
 'Gain',30, ...
 'NF',8, ...
 'OIP2',37);

b = rfbudget('Elements',[a1 d a2], ...
 'InputFrequency',2.1e9, ...
 'AvailableInputPower',-30, ...
 'SignalBandwidth',45e6)

b =
 rfbudget with properties:

 Elements: [1x3 rf.internal.rfbudget.RFElement]
 InputFrequency: 2.1 GHz
 AvailableInputPower: -30 dBm
 SignalBandwidth: 45 MHz
 Solver: Friis
 AutoUpdate: true

 Analysis Results
 OutputFrequency: (GHz) [2.1 0.07 0.07]
 OutputPower: (dBm) [-18.47 -24.47 5.53]
 TransducerGain: (dB) [11.53 5.53 35.53]
 NF: (dB) [1.53 1.843 4.793]

 RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF

7-223

 IIP2: (dBm) []
 OIP2: (dBm) []
 IIP3: (dBm) [Inf Inf Inf]
 OIP3: (dBm) [Inf Inf Inf]
 SNR: (dB) [65.91 65.6 62.65]

Why are OIP2 and IIP2 Empty in the Results?

The default Solver property of the rfbudget object is 'Friis', an equivalent baseband approximation
which is unable to compute IP2. To see the IP2 results, you can set the Solver property of the
budget object to 'HarmonicBalance'. This performs nonlinear circuit analysis to compute the steady-
state operating point, from which it is possible to compute IP2.

You can also select the 'HarmonicBalance' solver at rfbudget construction time by passing in a
Solver name-value pair after the other positional or name-value pair arguments, e.g.

b = rfbudget([a1 d a2],2.1e9,-30,45e6,'Solver','HarmonicBalance')

In general, the 'HarmonicBalance' solver is not as fast as the 'Friis' solver and does not compute
noise figure (NF) or signal-to-noise ratio (SNR).

b.Solver = 'HarmonicBalance'

b =
 rfbudget with properties:

 Elements: [1x3 rf.internal.rfbudget.RFElement]
 InputFrequency: 2.1 GHz
 AvailableInputPower: -30 dBm
 SignalBandwidth: 45 MHz
 Solver: HarmonicBalance
 WaitBar: true
 AutoUpdate: true

 Analysis Results
 OutputFrequency: (GHz) [2.1 0.07 0.07]
 OutputPower: (dBm) [-18.47 -24.47 5.53]
 TransducerGain: (dB) [11.53 5.53 35.53]
 NF: (dB) [1.53 4.7 6.487]
 IIP2: (dBm) [23.47 44.47 -4.581]
 OIP2: (dBm) [35 50 30.95]
 IIP3: (dBm) [Inf Inf 19.45]
 OIP3: (dBm) [Inf Inf 54.98]
 SNR: (dB) [65.91 62.74 60.96]

The rfbudget display above shows the results of the cascade computed by the 'HarmonicBalance'
solver. Comparing them to the 'Friis' results, the vector properties showing the OutputPower and
TransducerGain along the cascade match well.

As expected, the OIP2 and IIP2 properties have nonempty values. In addition, the output third-order
intercept point (OIP3) and input third-order intercept point (IIP3) properties have changed. The 'Friis'
solver is unable to capture the nonlinear bleeding through the IP2 properties of the cascade to affect
the third-order intercept point. Mathematically, this happens because cascading two second-order
polynomials results in a polynomial with a third-order term.

7 RF Toolbox Examples

7-224

Similarly, the NF results of Harmonic Balance are different (and more accurate) than the Friis results
because Harmonic Balance correctly captures the noise folding effects of nonlinearities.

Verifying HB Results Using RF Blockset Circuit Envelope Simulation

You can verify the harmonic balance NF, IP2 and IP3 results by exporting the budget to an RF
Blockset testbench model using the following command:

exportTestbench(b)

To verify NF, double-click on the RF Measurement Unit to open the mask, then select NF from the
Measured quantity pulldown. Then run the model. This verifies the Harmonic Balance NF calculation.

To verify IP2, double-click on the RF Measurement Unit to open its mask, then select IP2 from the
Measured quantity pulldown.

 RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF

7-225

Also uncheck the Simulate noise checkbox. Then run the model.

7 RF Toolbox Examples

7-226

To verify IP3, select IP3 from the Measured quantity pulldown and run the model again.

 RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF

7-227

Verifying HB results with RF Blockset Harmonic Balance

Rather than using the large machinery of circuit envelope and the RF Testbench, it is possible to
build a simpler model that computes the IP2 and IP3 using two tones and harmonic balance. Open the
model oipHB.slx found in the MATLAB/Examples folder. Simulate the model.

See Also

More About
• “Superheterodyne Receiver Using RF Budget Analyzer App” on page 7-2
• “Visualizing RF Budget Analysis Over Bandwidth” on page 7-16
• “Frequency Sweep in RF Budget Analysis” on page 7-210

7 RF Toolbox Examples

7-228

Analysis of Coplanar Waveguide Transmission line in X band
application

This example shows how to analyze a coplanar waveguide (cpw) transmission line for X-band
applications. CPW transmission line consists of a central metal strip separated by a narrow gap from
two ground planes on either side. The dimensions of the center strip, the gap, the thickness, and
permittivity of the dielectric substrate determine the characteristic impedance, group delay, and
noise. The gap in the cpw is usually very small and supports electric fields primarily concentrated in
the dielectric.

Define Parameters

The cpw transmission line has 200 mm slot width, 1600 mm conductor width, 635 mm height, 0.005
loss tangent, and 17 um of thickness. This example uses two different dielectric constants to simulate
the cpw transmission line. The dielectric constant values are 2.323 and 9.2.

cptxline1 = txlineCPW('EpsilonR',2.323,'SlotWidth',200e-6,'ConductorWidth',...
 1600e-6,'Height',635e-6,'LossTangent',0.005,'Thickness',17e-6);
cptxline2 = txlineCPW('EpsilonR',9.2,'SlotWidth',200e-6,'ConductorWidth',...
 1600e-6,'Height',635e-6,'LossTangent',0.005,'Thickness',17e-6);
% x band Frequency range 8 to 12GHz
freq = 5e9:10e6:14e9;

Plot Input Return Loss

The results for two different dielectric substrates indicates the impedance bandwidth increases with a
lower dielectric constant. The measurement results are for a frequency range of 5 GHz to 14GHz, and
magnitude of S11 < 10 dB.

figure;
sp1 = sparameters(cptxline1,freq);
sp2 = sparameters(cptxline2,freq);
rfplot(sp1,1,1);hold on;
rfplot(sp2,1,1);
title('Frequency Vs S-Parameters');
legend('EpsilonR 2.323','EpsilonR 9.2');
grid on;

 Analysis of Coplanar Waveguide Transmission line in X band application

7-229

Group Delay

Group delay variations versus frequency is an essential factor when using phase modulation and high
data rates. This impairment causes distortion and degradation in wideband applications. In a cpw
transmission line the group delay increases with increase in the frequency for both dielectric
substrates.

gd1 = groupdelay(cptxline1,freq,'Impedance',50);
gd2 = groupdelay(cptxline2,freq,'Impedance',50);
figure;plot(freq,gd1);hold on;
plot(freq,gd2);
title('Frequency Vs Group delay');
legend('EpsilonR 2.323','EpsilonR 9.2');
xlabel('Frequency');
ylabel('Group delay');
grid on;

7 RF Toolbox Examples

7-230

Noise Figure

The noise is generated primarily within the input stages of the receiver system itself. Cascaded stages
are not noisier than others. The noise generated at the input and amplified by the receiver's full gain
amplifier greatly exceeds the noise generated further along the receiver chain. In the results using
both lower and higher dielectric constant, noise figure increases with increasing frequency. The
variation is very less over the frequency range when using a lower dielectric constant.

nf1 = noisefigure(cptxline1,freq);
nf2 = noisefigure(cptxline2,freq);
figure;plot(freq,nf1);hold on;
plot(freq,nf2);
title('Frequency Vs Noise Figure');
legend('EpsilonR 2.323','EpsilonR 9.2');
xlabel('Frequency');
ylabel('Noise Figure');
grid on;

 Analysis of Coplanar Waveguide Transmission line in X band application

7-231

Characteristic Impedance

Relative permittivity for a homogeneous dielectric affects the characteristic impedance of cpw
transmission line. You can compute this approximately by using the electrical model of the cpw to
clarify impedance behavior along the frequency band. Characteristic impedance determines the
amount of power transfer and attenuation effect along the cpw transmission line. The characteristic
impedance of a transmission line is usually written as Z0. In the simulation, the resulting
characteristic impedance decreases with increasing frequency in both dielectric constants. With
lower dielectric constant impedance value is below 50 ohms, with higher dielectric constant
impedance value is above 50 ohms.

ChImp1 = getZ0(cptxline1,freq);
ChImp2 = getZ0(cptxline2,freq);
figure; plot(freq,ChImp1);hold on;
plot(freq,ChImp2);
title('Frequency Vs Characteristics Impedance');
xlabel('Frequency');
ylabel('Characteristics Impedance');
legend('EpsilonR 2.323','EpsilonR 9.2');
grid on;

7 RF Toolbox Examples

7-232

Conclusion

In RF and microwave circuit design the dielectric permittivity of the substrate plays an important role
and requires precise evaluation over a broad range of frequencies. With the above simulation you see
that, lower dielectric constant gives wider bandwidth, lower noise figure, and lower group delay.

Reference:

Sova, M., and I. Bogdan. "Coplanar Waveguide Resonator Design for Array Antenna Applications." In
6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting
Service, 2003. TELSIKS 2003.,1:57 to 59. Serbia, Montenegro, Nis: IEEE, 2003.

See Also

More About
• “Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network”

on page 7-216

 Analysis of Coplanar Waveguide Transmission line in X band application

7-233

Extract S-Parameters from Circuit
This example uses the Symbolic Math Toolbox™ to explain how the RF Toolbox™ extracts two-port S-
parameters from an RF Toolbox circuit object.

Consider a two-port network as shown in the figure 1that you want to characterize with S-
parameters. S-parameters are defined as V – I × Z0 = S V + I × Z0 .

Figure 1: Two-Port Network

To extract the S-parameters from a circuit into an sparameters object, the RF Toolbox terminates
each port with the reference impedance Z0. Then, the RF Toolbox independently drives each port j,
with 1

Z0
 and solves for the port voltages Vij. Driving with current sources is the Norton equivalent of

driving with a 1 V source and a series resistance of Z0.

Measure the port voltage Vij at node i when node j is driven.

• If i ≠ j, the S-parameter entry Sij is simply twice the port voltage Vij, and this is given using the
equation Sij = 2 × Vij.

• The diagonal entries of S-parameters when i = j are given using the equation Sij = 2 × Vij− 1.

7 RF Toolbox Examples

7-234

Figure 2: Circuit Driven at Port 1 with Current Source

Write Constitutive and Conservative Equations of Circuit

Circuits are represented in node-branch form in the RF Toolbox. There are four branches in the
circuit represented in figure 2, one for the input port, two for the two-port nport object, and one for
the output port. This means that the circuit has four branch current unknowns IS, I1, I2, and IL and
two node voltages V11 and V21. To represent the circuit described in figure 2 in node-branch form,
you need four constitutive equations to represent the branch currents and two conservative equations
to represent the node voltages.

syms F IS I1 I2 IL V1 V2 Z0
syms S11 S12 S21 S22

nI = 4; % number of branch currents
nV = 2; % number of node voltages

% F = [Fconstitutive; Fconservative]
F = [
 V1 - Z0*IS
 V1 - Z0*I1 - S11*(V1+Z0*I1) - S12*(V2+Z0*I2)
 V2 - Z0*I2 - S21*(V1+Z0*I1) - S22*(V2+Z0*I2)
 V2 - Z0*IL
 IS+I1
 I2+IL
]

F =
V1− IS Z0

V1− I1 Z0− S11 V1 + I1 Z0 − S12 V2 + I2 Z0
V2− I2 Z0− S21 V1 + I1 Z0 − S22 V2 + I2 Z0

V2− IL Z0
I1 + IS
I2 + IL

 Extract S-Parameters from Circuit

7-235

Jacobian Evaluation of Circuit

Use the jacobian function from the Symbolic Math Toolbox to compute the matrix of derivatives of
the function F with respect to the six unknowns (four branch currents and two node voltages)

J = jacobian(F,[IS; I1; I2; IL; V1; V2])

J =
−Z0 0 0 0 1 0

0 −Z0− S11 Z0 −S12 Z0 0 1− S11 −S12
0 −S21 Z0 −Z0− S22 Z0 0 −S21 1− S22
0 0 0 −Z0 0 1
1 1 0 0 0 0
0 0 1 1 0 0

Solve S-Parameters of Circuit

Create a two-column right-hand side vector, rhs, to represent the driving of each port.

syms rhs [nI+nV 2]
syms x v S

% Compute S-parameters of cascade
rhs(:,:) = 0;
rhs(nI+1,1) = 1/Z0; % rhs for driving input port
rhs(nI+nV,2) = 1/Z0 % rhs for driving output port

rhs =
0 0
0 0
0 0
0 0
1
Z0

0

0 1
Z0

To solve for the voltages, back solve the rhs with the Jacobian. The S-parameter matrix that MATLAB
outputs represents the two-port circuit shown in figure 1.

x = J \ rhs;
v = x(nI+[1 nV],:);
S = 2*v - eye(2)

S =
S11 S12
S21 S22

See Also

More About
• “Extract S-Parameters from Mutual Inductor” on page 7-238

7 RF Toolbox Examples

7-236

• “De-Embedding S-Parameters” on page 7-114
• “Bisect S-Parameters of Cascaded Probes” on page 7-118

 Extract S-Parameters from Circuit

7-237

Extract S-Parameters from Mutual Inductor
This example shows how to build a user-defined element from S-parameters and add it to an
rfbudget object for link budget analysis using the Symbolic Math Toolbox™. The user-defined
element in this example is a mutual inductor.

Consider a mutual inductor as shown in figure 1 with the inductors Laand Lb. This examples uses the
Symbolic Math Toolbox to extract the analytical S-parameters of the mutual inductor and write them
an RF Toolbox™ object. To extract S-parameters from a circuit, see “Extract S-Parameters from
Circuit” on page 7-234.

Figure 1: Mutual Inductor

One way to model a mutual inductor in the RF Toolbox is to draw the mutual inductor as an
equivalent of a two-port network of inductors in a T configuration. Such a mutual inductor is shown in
figure 2 with the mutual inductance M and the coupling coefficient k. Mutual inductance is given by
the equation M = k La × Lb relates M and k. Inductors in a T configuration can have negative values
when there is a strong coupling between the inductors or if the M is greater than Laor Lb.

7 RF Toolbox Examples

7-238

Figure 2: T-Circuit Representation of Mutual Inductor

Represent Circuit in Node-Branch Form

As discussed in the “Extract S-Parameters from Circuit” on page 7-234 example, to extract S-
parameters from a circuit you need to drive one port while terminating the other. This is shown in
figure 3. Use constitutive and conservative equations to represent the circuit in node-branch form.
There are eight unknowns, five branch currents and three node voltages. Therefore there are eight
equations in the node-form, five constitutive equations for the branches and three conservative
equations obtained from the Kirchoff's Current Law for the nodes. The constitutive equation for a
resistor is derived from Ohm's Law,V = IR, and the constitutive equation for an inductor is given by
V = sLR, where s is a complex frequency.

Figure 3: Mutual Inductor Driven at Port 1 with Current Source

syms F
syms I [5 1]

 Extract S-Parameters from Mutual Inductor

7-239

syms V [3 1]
syms Z0 La Lb M s

nI=5; % number of branch currents
nV=3; % number of node voltages

% F = [Fconstitutive; Fconservative]
F = [
 V1 - Z0*I1
 V1 - V2 - (La-M)*I3*s
 V2 - M*I4*s
 V2 - V3 + (Lb-M)*I5*s
 V3 - I2*Z0
 I1 + I3
 I4 - I5 - I3
 I2 + I5
]

F =
V1− I1 Z0

V1− V2− I3 s La−M
V2− I4 M s

V2− V3 + I5 s Lb−M
V3− I2 Z0

I1 + I3
I4− I3− I5

I2 + I5

Compute Jacobian

Determine the Jacobian with respect to the unknowns, the five branch currents and three node
voltages.

J = jacobian(F,[I; V]);

Solve S-parameters for Further Analysis

As shown in the Extract S-Parameter from a Circuit example, create the right-hand side, rhs
vector to the drive and terminate ports.

syms rhs [nI+nV 2]
syms x v S t

% Compute S-parameters of cascade
rhs(:,:) = 0;
rhs(nI+1,1) = 1/Z0; % rhs for driving input port
rhs(nI+nV,2) = 1/Z0 % rhs for driving output port

rhs =

7 RF Toolbox Examples

7-240

0 0
0 0
0 0
0 0
0 0
1
Z0

0

0 0

0 1
Z0

By backsolving rhs, solve for the voltages using Jacobian.

x = J \ rhs;
v = x(nI+[1 nV],:);
S = (2*v - eye(2));

Create Object for RF Toolbox

In order to create a sparameters object, the parameters must be determined at a set of frequencies.
To do so, define the variables for your mutual inductor. If you would like to test multiple values for
your variables and automatically update your sparameters object, use Numeric Sliders in the
Control drop-down under the Live Editor tab. Then, use the Symbolic Math Toolbox's
matlabFunction to automatically generate a function, mutualInductorS to compute the analytic
S-parameters at a set of frequencies. Finally, use the sparameters object to create a S-parameters
object.

matlabFunction(S,'file','mutualInductorS.m','Optimize',false);

La = ;

Lb = ;

Z0 = ;

k = ;
M = k*((La*Lb)^(1/2));

freq = linspace(1e9,2e9,10);
s = 2i*pi*freq;
s_param = zeros(2,2,10);
for index = 1:numel(freq)
 s_param(:,:,index) = mutualInductorS(Lb,Lb,M,Z0,s(index));
end

Sobj = sparameters(s_param,freq);

Create Object for RF Budget

Use an rfwrite function to create a Touchstone® file from the sparameters object.

rfwrite(Sobj,'mutualInductor.s2p');

Create a nport object.

n = nport('mutualInductor.s2p');

 Extract S-Parameters from Mutual Inductor

7-241

Provide the nport object as an input to rfbudget object.

b = rfbudget(n,2.1e9,-30,10e3);

Type this command at the MATLAB Command Window to open the mutual inductor as a S-parameter
element in the RF Budget Analyzer app.

show(b)

Using this method you can build your own components for RF budget analysis.

See Also

More About
• “Extract S-Parameters from Circuit” on page 7-234
• “De-Embedding S-Parameters” on page 7-114
• “Bisect S-Parameters of Cascaded Probes” on page 7-118

7 RF Toolbox Examples

7-242

	RF Objects
	RF Data Objects
	Overview
	Types of Data
	Available Data Objects
	Data Object Methods

	RF Circuit Objects
	Overview of RF Circuit Objects
	Components Versus Networks
	Available Components and Networks
	Circuit Object Methods

	RF Model Objects
	Overview of RF Model Objects
	Available Model Objects
	Model Object Methods

	RF Network Parameter Objects
	Overview of Network Parameter Objects
	Available Network Parameter Objects
	Network Parameter Object Functions

	Model an RF Component
	Create RF Objects
	Construct a New Object
	Copy an Existing Object

	Specify or Import Component Data
	RF Object Properties
	Set Property Values
	Import Property Values from Data Files
	Use Data Objects to Specify Circuit Properties
	Retrieve Property Values
	Reference Properties Directly Using Dot Notation

	Specify Operating Conditions
	Available Operating Conditions
	Set Operating Conditions
	Display Available Operating Condition Values

	Process File Data for Analysis
	Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters
	Extract M-Port S-Parameters from N-Port S-Parameters
	Cascade N-Port S-Parameters

	Analyze and Plot RF Components
	Analyze Networks in Frequency Domain
	Visualize Component and Network Data
	Compute and Plot Time-Domain Specifications

	Export Component Data to File
	Available Export Formats
	How to Export Object Data
	Export Object Data

	Basic Operations with RF Objects

	Export Verilog-A Models
	Model RF Objects Using Verilog-A
	Overview
	Behavioral Modeling Using Verilog-A
	Supported Verilog-A Models

	Export Verilog-A Model
	Represent Circuit Object with Model Object
	Write Verilog-A Module

	The RF Design and Analysis Tool
	The RF Design and Analysis Tool
	What is the RF Design and Analysis App?
	Open the RF Design and Analysis App
	The RF Design and Analysis Window
	The RF Design and Analysis App Workflow

	Create and Import Circuits
	Circuits in the RF Design and Analysis App
	Create RF Components
	Create RF Networks
	Import RF Objects into the RF Design and Analysis App

	Modify Component Data
	Analyze Circuits
	Export RF Objects
	Export Components and Networks
	Export to Workspace
	Export to a File

	Manage Circuits and Sessions
	Working with Circuits
	Working with the RF Design and Analysis App Sessions

	Model an RF Network
	Overview
	Start the RF Design and Analysis App
	Create the Amplifier Network
	Populate the Amplifier Network
	Analyze the Amplifier Network
	Export the Network to the Workspace

	AMP File Format
	AMP File Data Sections
	Overview
	Denoting Comments
	Data Sections
	S, Y, or Z Network Parameters
	Noise Parameters
	Noise Figure Data
	Power Data
	IP3 Data
	Inconsistent Data Sections

	How Tos, Definitions, Algorithms
	Determining Parameter Formats
	Primary and Secondary Formats
	Determining Formats for One Parameter
	Determining Formats for Multiple Parameters

	RF Toolbox Examples
	Superheterodyne Receiver Using RF Budget Analyzer App
	Visualizing RF Budget Analysis Over Bandwidth
	Bandpass Filter Response
	MOS Interconnect and Crosstalk
	Bandpass Filter Response using RFCKT Objects
	MOS Interconnect and Crosstalk Using RFCKT Objects
	Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-Port S-Parameters)
	Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational Function)
	Modeling a High-Speed Backplane (4-Port S-Parameters to Differential TDR and TDT)
	Modeling a High-Speed Backplane (Rational Function to a Simulink® Model)
	Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)
	Using 'NPoles' Parameter With rationalfit
	Using 'Weight' Parameter With rationalfit
	Using 'DelayFactor' Parameter With rationalfit
	Data Analysis on S-Parameters of RF Data Files
	Write S2P Touchstone® Files
	Visualize Mixer Spurs
	Finding Free IF Bandwidths
	De-Embedding S-Parameters
	Bisect S-Parameters of Cascaded Probes
	Designing Matching Networks for Low Noise Amplifiers
	Designing Matching Networks (Part 2: Single Stub Transmission Lines)
	Design Broadband Matching Networks for Antennas
	Design Broadband Matching Networks for Amplifier
	Impedance Matching of Small Monopole Antenna
	Operations with RF Circuit Objects
	Operations with RF Data Objects
	Design IF Butterworth Bandpass Filter
	Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output
	Design, Visualize and Explore Inverse Chebyshev filter - I
	Design, visualize and explore Inverse Chebyshev filter - II
	Design Matching Networks for Passive Multiport Network
	Frequency Sweep in RF Budget Analysis
	Using Rational Object to Fit S-Parameters
	Design Two-Stage Low Noise Amplifier Using Microstrip Transmission Line Matching Network
	RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF
	Analysis of Coplanar Waveguide Transmission line in X band application
	Extract S-Parameters from Circuit
	Extract S-Parameters from Mutual Inductor

